
,

Software Quality
Assurance

IEEE Press Editorial Board
Tariq Samad, Editor in Chief

Giancarlo Fortino Xiaoou Li Ray Perez
Dmitry Goldgof Andreas Molisch Linda Shafer
Don Heirman Saeid Nahavandi Mohammad Shahidehpour
Ekram Hossain Jeffrey Nanzer Zidong Wang

About IEEE Computer Society

IEEE Computer Society is the world’s leading computing membership organi-
zation and the trusted information and career-development source for a global
workforce of technology leaders including: professors, researchers, software engi-
neers, IT professionals, employers, and students. The unmatched source for tech-
nology information, inspiration, and collaboration, the IEEE Computer Society is
the source that computing professionals trust to provide high-quality, state-of-the-
art information on an on-demand basis. The Computer Society provides a wide
range of forums for top minds to come together, including technical conferences,
publications, and a comprehensive digital library, unique training webinars, pro-
fessional training, and the TechLeader Training Partner Program to help organiza-
tions increase their staff’s technical knowledge and expertise, as well as the per-
sonalized information tool myComputer. To find out more about the community
for technology leaders, visit http://www.computer.org.

IEEE/Wiley Partnership

The IEEE Computer Society and Wiley partnership allows the CS Press authored
book program to produce a number of exciting new titles in areas of computer
science, computing, and networking with a special focus on software engineering.
IEEE Computer Society members continue to receive a 15% discount on these
titles when purchased through Wiley or at wiley.com/ieeecs.

To submit questions about the program or send proposals, please contact
Mary Hatcher, Editor, Wiley-IEEE Press: Email: mhatcher@wiley.com, Tele-
phone: 201-748-6903, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774.

http://www.computer.org
mailto:mhatcher@wiley.com

Software Quality
Assurance
Claude Y. Laporte
Alain April

This edition first published 2018
© 2018 the IEEE Computer Society, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is
available at http://www.wiley.com/go/permissions.

The rights of Claude Y. Laporte and Alain April to be identified as the authors of this work have been
asserted in accordance with law.

Translated by Rosalia Falco.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work
and specifically disclaim all warranties, including without limitation any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives, written sales materials or promotional statements for this work. The fact that an
organization, website, or product is referred to in this work as a citation and/or potential source of further
information does not mean that the publisher and authors endorse the information or services the
organization, website, or product may provide or recommendations it may make. This work is sold with
the understanding that the publisher is not engaged in rendering professional services. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a specialist
where appropriate. Further, readers should be aware that websites listed in this work may have changed
or disappeared between when this work was written and when it is read. Neither the publisher nor
authors shall be liable for any loss of profit or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Laporte, Claude Y., author. | April, Alain, author.
Title: Software quality assurance / by Claude Y. Laporte, Alain April.
Description: 1 | Hoboken, NJ : Wiley-IEEE Computer Society, Inc., 2018. |

Includes bibliographical references and index. |
Identifiers: LCCN 2017036440 (print) | LCCN 2017041869 (ebook) | ISBN

9781119312413 (pdf) | ISBN 9781119312420 (epub) | ISBN 9781118501825 (hardback)
Subjects: LCSH: Computer software–Quality control. | Computer software–Quality

control–Standards. | BISAC: TECHNOLOGY & ENGINEERING / Quality Control.
Classification: LCC QA76.76.Q35 (ebook) | LCC QA76.76.Q35 L42 2018 (print) |

DDC 005.3028/7–dc23
LC record available at https://lccn.loc.gov/2017036440

Cover image: ©naqiewei/Gettyimages
Cover design by Wiley

Set in 10/12pt TimesLTStd by Aptara Inc., New Delhi, India

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com
https://lccn.loc.gov/2017036440

Contents

Preface xv
Acknowledgments xxiii

1. Software Quality Fundamentals 1

1.1 Introduction 1
1.2 Defining Software Quality 2
1.3 Software Errors, Defects, and Failures 4

1.3.1 Problems with Defining Requirements 10
1.3.2 Maintaining Effective Communications Between Client and

Developer 13
1.3.3 Deviations from Specifications 14
1.3.4 Architecture and Design Errors 15
1.3.5 Coding Errors 15
1.3.6 Non-Compliance with Current Processes/Procedures 16
1.3.7 Inadequate Reviews and Tests 17
1.3.8 Documentation Errors 17

1.4 Software Quality 19
1.5 Software Quality Assurance 20
1.6 Business Models and the Choice of Software Engineering

Practices 22
1.6.1 Description of the Context 23
1.6.2 Anxiety and Fear 24
1.6.3 Choice of Software Practices 25
1.6.4 Business Model Descriptions 25
1.6.5 Description of Generic Situational Factors 26
1.6.6 Detailed Description of Each Business Model 27

1.7 Success Factors 32
1.8 Further Reading 33
1.9 Exercises 34

2. Quality Culture 35

2.1 Introduction 35
2.2 Cost of Quality 39
2.3 Quality Culture 49
2.4 The Five Dimensions of a Software Project 53

v

vi Contents

2.5 The Software Engineering Code of Ethics 56
2.5.1 Abridged Version: Preamble 58
2.5.2 The Example of the Code of Ethics of the Ordre des ingénieurs du

Québec 60
2.5.3 Whistle Blowers 61

2.6 Success Factors 62
2.7 Further Reading 63
2.8 Exercises 63

3. Software Quality Requirements 66

3.1 Introduction 66
3.2 Software Quality Models 69

3.2.1 Initial Model Proposed by McCall 71
3.2.2 The First Standardized Model: IEEE 1061 73
3.2.3 Current Standardized Model: ISO 25000 Set of Standards 77

3.3 Definition of Software Quality Requirements 86
3.3.1 Specifying Quality Requirements: The Process 91

3.4 Requirement Traceability During the Software Life Cycle 95
3.5 Software Quality Requirements and the Software

Quality Plan 95
3.6 Success Factors 96
3.7 Further Reading 97
3.8 Exercises 97

4. Software Engineering Standards and Models 101

4.1 Introduction 101
4.2 Standards, Cost of Quality, and Business Models 108
4.3 Main Standards for Quality Management 109

4.3.1 ISO 9000 Family 109
4.3.2 ISO/IEC 90003 Standard 115

4.4 ISO/IEC/IEEE 12207 Standard 117
4.4.1 Limitations of the ISO 12207 Standard 121

4.5 ISO/IEC/IEEE 15289 Standard for the Description of Information
Elements 121

4.6 IEEE 730 Standard for SQA Processes 123
4.6.1 Activities and Tasks of SQA 125

4.7 Other Quality Models, Standards, References, and Processes 129
4.7.1 Process Maturity Models of the SEI 130
4.7.2 Software Maintenance Maturity Model (S3m) 135
4.7.3 ITIL Framework and ISO/IEC 20000 138
4.7.4 CobiT Process 142
4.7.5 ISO/IEC 27000 Family of Standards for Information Security 143
4.7.6 ISO/IEC 29110 Standards and Guides for Very Small Entities 144
4.7.7 ISO/IEC 29110 Standards for VSEs Developing Systems 155

Contents vii

4.8 Specific Standards for an Application Domain 156
4.8.1 DO-178 and ED-12 Guidance for Airborne Systems 156
4.8.2 EN 50128 Standard for Railway Applications 159
4.8.3 ISO 13485 Standard for Medical Devices 161

4.9 Standards and the SQAP 163
4.10 Success Factors 165
4.11 Further Reading 165
4.12 Exercises 166

5. Reviews 167

5.1 Introduction 167
5.2 Personal Review and Desk-Check Review 172

5.2.1 Personal Review 172
5.2.2 Desk-Check Reviews 175

5.3 Standards and Models 179
5.3.1 ISO/IEC 20246 Software and Systems Engineering:

Work Product Reviews 179
5.3.2 Capability Maturity Model Integration 180
5.3.3 The IEEE 1028 Standard 181

5.4 Walk-Through 184
5.4.1 Usefulness of a Walk-Through 184
5.4.2 Identification of Roles and Responsibilities 186

5.5 Inspection Review 187
5.6 Project Launch Reviews and Project Assessments 189

5.6.1 Project Launch Review 190
5.6.2 Project Retrospectives 192

5.7 Agile Meetings 197
5.8 Measures 199
5.9 Selecting the Type of Review 202
5.10 Reviews and Business Models 205
5.11 Software Quality Assurance Plan 205
5.12 Success Factors 206
5.13 Tools 208
5.14 Further Reading 208
5.15 Exercises 208

6. Software Audits 210

6.1 Introduction 210
6.2 Types of Audits 215

6.2.1 Internal Audit 215
6.2.2 Second-Party Audit 215
6.2.3 Third-Party Audit 217

viii Contents

6.3 Audit and Software Problem Resolution According to
ISO/IEC/IEEE 12207 217
6.3.1 Project Assessment and Control Process 218
6.3.2 Decision Management Process 218

6.4 Audit According to the IEEE 1028 Standard 218
6.4.1 Roles and Responsibilities 220
6.4.2 IEEE 1028 Audit Clause 221
6.4.3 Audit Conducted According to IEEE 1028 222

6.5 Audit Process and the ISO 9001 Standard 225
6.5.1 Steps of a Software Audit 226

6.6 Audit According to the CMMI 230
6.6.1 SCAMPI Assessment Method 231

6.7 Corrective Actions 233
6.7.1 Corrective Actions Process 234

6.8 Audits for Very Small Entities 238
6.9 Audit and the SQA Plan 239
6.10 Presentation of an Audit Case Study 241
6.11 Success Factors 246
6.12 Further Reading 247
6.13 Exercises 247

7. Verification and Validation 249

7.1 Introduction 249
7.2 Benefits and Costs of V&V 255

7.2.1 V&V and the Business Models 257
7.3 V&V Standards and Process Models 257

7.3.1 IEEE 1012 V&V Standard 258
7.3.2 Integrity Levels 260
7.3.3 Recommended V&V Activities for Software

Requirements 262
7.4 V&V According to ISO/IEC/IEEE 12207 263

7.4.1 Verification Process 265
7.4.2 Validation Process 265

7.5 V&V According to the CMMI Model 266
7.6 ISO/IEC 29110 and V&V 267
7.7 Independent V&V 268

7.7.1 IV&V Advantages with Regards to SQA 271
7.8 Traceability 271

7.8.1 Traceability Matrix 273
7.8.2 Implementing Traceability 276

7.9 Validation Phase of Software Development 277
7.9.1 Validation Plan 279

7.10 Tests 281

Contents ix

7.11 Checklists 282
7.11.1 How to Develop a Checklist 283
7.11.2 How to Use a Checklist 285
7.11.3 How to Improve and Manage a Checklist 286

7.12 V&V Techniques 287
7.12.1 Introduction to V&V Techniques 287
7.12.2 Some V&V Techniques 288

7.13 V&V Plan 289
7.14 Limitations of V&V 290
7.15 V&V in the SQA Plan 291
7.16 Success Factors 292
7.17 Further Reading 293
7.18 Exercises 293

8. Software Configuration Management 295

8.1 Introduction 295
8.2 Software Configuration Management 296
8.3 Benefits of Good Configuration Management 297

8.3.1 CM According to ISO 12207 298
8.3.2 CM According to IEEE 828 299
8.3.3 CM According to the CMMI 299

8.4 SCM Activities 301
8.4.1 Organizational Context of SCM 301
8.4.2 Developing a SCM Plan 302
8.4.3 Identification of CI to be Controlled 303

8.5 Baselines 309
8.6 Software Repository and Its Branches 311

8.6.1 A Simple Branching Strategy 315
8.6.2 A Typical Branching Strategy 316

8.7 Configuration Control 318
8.7.1 Requests, Evaluation, and Approval of Changes 319
8.7.2 Configuration Control Board 321
8.7.3 Request for Waivers 322
8.7.4 Change Management Policy 322

8.8 Configuration Status Accounting 323
8.8.1 Information Concerning the Status of CI 323
8.8.2 Configuration Item Status Reporting 325

8.9 Software Configuration Audit 325
8.9.1 Functional Configuration Audit 327
8.9.2 Physical Configuration Audit 327
8.9.3 Audits Performed During a Project 328

8.10 Implementing SCM in Very Small Entities with
ISO/IEC 29110 329

8.11 SCM and the SQAP 330

x Contents

8.12 Success Factors 331
8.13 Further Reading 333
8.14 Exercises 333

9. Policies, Processes, and Procedures 335

9.1 Introduction 335
9.1.1 Standards, the Cost of Quality, and Business Models 341

9.2 Policies 341
9.3 Processes 345
9.4 Procedures 351
9.5 Organizational Standards 352
9.6 Graphical Representation of Processes and Procedures 353

9.6.1 Some Pitfalls to Avoid 356
9.6.2 Process Mapping 357
9.6.3 ETVX Process Notation 357
9.6.4 IDEF Notation 366
9.6.5 BPMN Notation 370

9.7 Process Notation of ISO/IEC 29110 376
9.8 Case Study 383
9.9 Personal Improvement Process 388
9.10 Policies, Processes, and Procedures in the SQA Plan 393
9.11 Success Factors 394
9.12 Further Reading 395
9.13 Exercises 396

10. Measurement 397

10.1 Introduction—the Importance of Measurement 397
10.1.1 Standards, the Cost of Quality, and Software

Business Models 401
10.2 Software Measurement According to

ISO/IEC/IEEE 12207 402
10.3 Measurement According to ISO 9001 403
10.4 The Practical Software and Systems

Measurement Method 404
10.5 ISO/IEC/IEEE 15939 Standard 411

10.5.1 Measurement Process According to ISO 15939 412
10.5.2 Activities and Tasks of the Measurement Process 412
10.5.3 An Information Measurement Model of ISO 15939 412

10.6 Measurement According to the CMMI Model 418
10.7 Measurement in Very Small Entities 421
10.8 The Survey as a Measurement Tool 421

Contents xi

10.9 Implementing a Measurement Program 425
10.9.1 Step 1: Management Commitment Build-Up 426
10.9.2 Step 2: Staff Commitment Build-Up 427
10.9.3 Step 3: Selection of Key Processes to be Improved 427
10.9.4 Step 4: Identification of the Goals and Objectives Related to

the Key Process 427
10.9.5 Step 5: Design of the Measurement Program 427
10.9.6 Step 6: Description of the Information System to Support

Measurement 428
10.9.7 Step 7: Deployment of the Measurement Program 428

10.10 Practical Considerations 430
10.10.1 Some Pitfalls with Regards to Measurement 432

10.11 The Human Side of Measurement 435
10.11.1 Cost of Measurement 438

10.12 Measurement and the IEEE 730 SQAP 439
10.12.1 Software Process Measurement 440
10.12.2 Software Product Measurement 441

10.13 Success Factors 443
10.14 Further Reading 443
10.15 Exercises 444

11. Risk Management 445

11.1 Introduction 445
11.1.1 Risk, the Cost of Quality and Business Models 451
11.1.2 Costs and Benefits of Risk Management 453

11.2 Risk Management According to Standards and Models 454
11.2.1 Risk Management According to ISO 9001 454
11.2.2 Risk Management According to ISO/IEC/IEEE 12207 455
11.2.3 Risk Management According to ISO/IEC/IEEE 16085 456
11.2.4 Risk Management According to the CMMI Model 459
11.2.5 Risk Management According to PMBOK® Guide 461
11.2.6 Risk Management According to ISO 29110 462
11.2.7 Risk Management and the SQA According

to IEEE 730 465
11.3 Practical Considerations for Risk Management 466

11.3.1 Risk Evaluation Step 468
11.3.2 Risk Control Step 474
11.3.3 Lessons Learned Activity 477

11.4 Risk Management Roles 478
11.5 Measurement and Risk Management 479
11.6 Human Factors and Risk Management 483
11.7 Success Factors 485
11.8 Conclusion 486
11.9 Further Reading 487
11.10 Exercises 487

xii Contents

12. Supplier Management and Agreements 489

12.1 Introduction 489
12.2 Supplier Requirements of ISO 9001 490
12.3 Agreement Processes of ISO 12207 491
12.4 Supplier Agreement Management According

to the CMMI 494
12.5 Managing Suppliers 496
12.6 Software Acquisition Life Cycle 497
12.7 Software Contract Types 499

12.7.1 Fixed Price Contract 501
12.7.2 Cost plus Percentage of Cost 502
12.7.3 Cost plus Fixed Fee 502
12.7.4 Risk Sharing 502

12.8 Software Contract Reviews 505
12.8.1 Two Reviews: Initial and Final 505
12.8.2 Initial Contract Review 506
12.8.3 Final Contract Review 509

12.9 Supplier and Acquirer Relationship and the SQAP 510
12.10 Success Factors 511
12.11 Further Reading 512
12.12 Exercises 512

13. Software Quality Assurance Plan 514

13.1 Introduction 514
13.2 SQA Planning 518

13.2.1 Purpose and Scope 518
13.2.2 Definitions and Acronyms 518
13.2.3 Reference Documents 519
13.2.4 SQAP Overview—Organization and Independence 520
13.2.5 SQAP Overview—Software Product Risk 524
13.2.6 SQAP Overview—Tools 525
13.2.7 SQAP Overview—Standards, Practices,

and Conventions 525
13.2.8 SQAP Overview—Effort, Resources, and Schedule 526
13.2.9 Activities, Outcomes, and Tasks—Product Assurance 528
13.2.10 Activities, Outcomes, and Tasks—Process Assurance 529
13.2.11 Additional Considerations 531
13.2.12 SQA Records 536

13.3 Executing the SQAP 537
13.4 Conclusion 539
13.5 Further Reading 539
13.6 Exercises 540

Contents xiii

Appendix 1. Software Engineering Code of Ethics and Professional
Practice (Version 5.2) 541

Appendix 2. Incidents and Horror Stories Involving Software 549

Glossary – Abbreviations – Acronyms 555
References 576
Index 591

Preface

This book addresses the global challenge of the improvement of software qual-
ity. It seeks to provide an overview of software quality assurance (SQA) practices
for customers, managers, auditors, suppliers, and personnel responsible for software
projects, development, maintenance, and software services.

In a globally competitive environment, clients and competitors exert a great deal
of pressure on organizations. Clients are increasingly demanding and require, among
other things, software that is of high quality, low cost, delivered quickly, and with
impeccable after-sales support. To meet the demand, quality, and deadlines, the orga-
nization must use efficient quality assurance practices for their software activities.

Ensuring software quality is not an easy task. Standards define ways to maximize
performance but managers and employees are largely left to themselves to decide how
to practically improve the situation. They face several problems:

– increasing pressure to deliver quality products quickly;

– increasing size and complexity of software and of systems;

– increasing requirements to meet national, international, and professional stan-
dards;

– subcontracting and outsourcing;

– distributed work teams; and

– ever changing platforms and technologies.

We will focus on the issue of SQA in industry and in public organizations. Indus-
try and public organizations do not have access to a complete and integrated reference
(i.e., one book) that can help them with assessing and improving activities specific to
SQA. The SQA department must meet service standards for its customers, the tech-
nical criteria of the field, and maximize strategic and economic impacts.

The purpose of this book is to enable managers, clients, suppliers, developers,
auditors, software maintainers, and SQA personnel to use this information to assess

xv

xvi Preface

the effectiveness and completeness of their approach to SQA. Some of the issues
raised here include:

– What are the processes, practices, and activities of SQA and software improve-
ment?

– Can the current standards and models serve as a reference?

– How do we ensure that managers and their staff understand the value of SQA
activities and their implementation?

To answer these questions, we drew upon over 30 years of practical experience
in software engineering and SQA in different organizations such as telecom, bank-
ing, defense, and transportation. This industry experience has convinced us of the
importance of supporting the presentation of concepts and theory with references
and practical examples. We have illustrated the correct and effective implementation
of numerous quality assurance practices with real case studies throughout the book.

In many organizations, SQA is a synonym for testing. SQA, as presented in this
book, covers a large spectrum of proven practices to provide a level of confidence
that quality in software development and maintenance activities is independent of the
life cycle selected by an organization or a project.

In this book, we will extensively use the term “software quality assurance” and
the acronym SQA. As defined in the IEEE Standard for Software Quality Assurance
Processes, IEEE 730-2014, a function is a set of resources and activities that achieve
a particular purpose [IEE 14]. The SQA function can be executed by a software
project team member. It could also be executed by an independent party (e.g., within
a quality assurance (QA) department responsible for hardware, software, and supplier
quality).

STRUCTURE AND ORGANIZATION OF THIS BOOK

The book is divided into 13 chapters that cover the basic knowledge of SQA as iden-
tified, among others, by the IEEE 730 Standard for SQA Processes of the Institute of
Electrical and Electronics Engineers (IEEE), the ISO/IEC/IEEE 12207 software life
cycle processes standard, the Capability Maturity Model® Integration for Develop-
ment (CMMI®-DEV) developed by the Software Engineering Institute as well as the
ISO Guide to the Software Engineering Body of Knowledge (SWEBOK®). Numer-
ous practical examples are used to illustrate the application of SQA practices.

CHAPTER 1: SOFTWARE QUALITY FUNDAMENTALS

This chapter presents an overview of the knowledge required by SQA practitioners.
From this overview, the book develops every aspect of the field and cites the important
references that deepen each specific topic. We use the concept of business models to

Preface xvii

explain the significant differences in the selection of SQA practices. In this chapter,
we also establish terms and their definitions as well as useful concepts that are used
throughout the book.

CHAPTER 2: QUALITY CULTURE

This chapter introduces the concept of cost of quality, followed by practical examples.
It also introduces the concept of quality culture and its influence on the SQA practices
used. We also present five dimensions of a software project and how these dimensions
can be used to identify the degrees of freedom a project manager has to ensure its
success. In this chapter, we present an overview of software engineering ethics and
the techniques to manage the expectations of managers and customers with respect
to software quality.

CHAPTER 3: SOFTWARE QUALITY REQUIREMENTS

This chapter adds to the concepts and terminology already presented. It deals with
software quality models as well as ISO standards on software quality models. These
models propose classifications of software quality requirements and steps to define
them. Practical examples describe how to use these models to define the quality
requirements of a software project. Finally, we introduce the concept of requirements
traceability and the importance of quality requirements for the SQA plan.

CHAPTER 4: SOFTWARE ENGINEERING STANDARDS
AND MODELS

This chapter presents the most important international standards of ISO and models
about software quality, such as the CMMI® developed by the Software Engineering
Institute. A new ISO standard for very small organizations is also presented. The
SQA practitioner and specialist will find proven practices from standards and mod-
els. This chapter provides the framework that can be useful for the following major
software activities: (1) development, (2) maintenance, and (3) IT services. Finally,
a short discussion on the standards specific to certain domains of application is pre-
sented, followed by recommendations for a SQA plan.

CHAPTER 5: REVIEWS

This chapter presents different types of software reviews: personal review, the “desk
check,” the walk-through, and the inspection. We describe the theory about reviews
and then provide practical examples. It introduces reviews in an agile context. Sub-
sequently, we describe other reviews specific to a project: the project launch review

xviii Preface

and lessons learned review. The chapter concludes with a discussion on the selection
of one type of review depending on your business domain and how these techniques
fit into the SQA plan.

CHAPTER 6: SOFTWARE AUDITS

This chapter describes the audit process and the software problem resolution process.
Sooner or later in the career of a software practitioner, audits will be conducted in a
software project. Standards and models describing audits are presented followed by
a practical case. The chapter concludes with a discussion of the role of audits in the
SQA plan.

CHAPTER 7: VERIFICATION AND VALIDATION

This chapter describes the concept of software verification and validation (V&V). It
describes its benefits as well as the costs of using V&V practices. Then, the standards
and models that impose or describe V&V practices for a project are described. Finally,
the description of the contents of a V&V plan is presented.

CHAPTER 8: SOFTWARE CONFIGURATION
MANAGEMENT

This chapter describes an important component of software quality: software con-
figuration management (SCM). The chapter begins by presenting the usefulness of
SCM and typical SCM activities. It presents repositories and branching techniques
involved in source code management, as well as the concepts of software control,
software status, and software audits. Finally, this chapter concludes with a proposal
for the implementation of SCM in a small organization and ends with a discussion of
the role of SCM in the SQA plan.

CHAPTER 9: POLICIES, PROCESSES, AND
PROCEDURES

This chapter explains how to develop, document, and improve policies, processes, and
procedures to ensure the effectiveness and efficiency of the software organization. It
explains the importance of documentation presenting a few notations, as examples,
to document processes and procedures. The chapter ends by presenting the Personal
Software Process (PSP) developed by the Software Engineering Institute to ensure
individuals have a disciplined and structured approach to software development that
enables them to significantly increase the quality of their software products.

Preface xix

CHAPTER 10: MEASUREMENT

This chapter explains the importance of measurement, standards, and models, and
presents a methodology to describe the requirements for a measurement process. It
presents how measurement can be used by small organizations and small projects.
Then, an approach to implement a measurement program, to detect the potential pit-
falls, and the potential impact of human factors, when measuring, is discussed. The
chapter concludes with a discussion of the role of measurement in a SQA plan.

CHAPTER 11: RISK MANAGEMENT

This chapter presents the main models and standards that include requirements for
the management of risks. It discusses the risks that may affect the quality of software
and techniques to identify, prioritize, document, and mitigate them. It also presents
the roles of stakeholders in the risk management process and discusses the human
factors to consider in the management of software risks. The chapter concludes with
a discussion on the critical role of risk in the development of a SQA plan.

CHAPTER 12: SUPPLIER MANAGEMENT AND
AGREEMENTS

This chapter deals with the important topic of supplier management and agreements.
It discusses the major reviews and recommendations of the CMMI®. Subsequently,
it lists the different types of software agreements and the benefits of the risk shar-
ing agreement are illustrated using a practical example. This chapter concludes with
recommendations for the content of the SQA plan when suppliers are involved.

CHAPTER 13: SOFTWARE QUALITY ASSURANCE
PLAN

This chapter summarizes the topics presented in the whole book by using the concepts
presented in each chapter to assemble a comprehensive SQA plan that conforms to
the IEEE 730 recommendation. It ends by presenting additional recommendations
and practical examples.

APPENDICES

Appendix 1 – Software Engineering Code of Ethics and Professional Practice
(Version 5.2)

Appendix 2 – Incidents and Horror Stories involving Software

xx Preface

ICONS USED IN THE BOOK

Different icons are used throughout this book to illustrate a concept with a practical
example; to focus on a definition; to present an anecdote, a tool, or checklist; or simply
to provide a quote or a website. Consult the table below for the meaning of each icon.

Icon Meaning

Practical example: An example of the practical application of a theoretical
concept

Quote: A quote from an expert

Definition: A definition of an important term

Reference on the Web: An internet site to learn more about a specific topic

Tools: Examples of tools that support the techniques presented

Anecdote: A short story of a little known fact, or a curious point on the
subject discussed

Checklist: A list of items to check, or not to be forgotten, during the execution
of a presented technique

Tip: A tip from the authors or from another professional

WEBSITE

Supplementary material for teaching as well as for use in organizations (e.g., presen-
tation material, solutions, project descriptions, templates, tools, articles, and links) is
available on the website: www.sqabook.org.

Given that international standards are updated on a regular basis, the website will
also highlight the latest developments that contribute to SQA practices.

EXERCISES

Each chapter contains exercises.

NOTES

Many software engineering standards from ISO and IEEE have been cited in this
book. These standards are updated on a regular basis, typically every five years,
to reflect evolving software engineering practices. The accompanying website,

let &hbox {char '046}www.sqabook.org
http://www.sqabook.org

Preface xxi

www.sqabook.org, contains complementary information as well as the latest devel-
opments that impact or contribute to SQA practices described in each chapter and
will evolve over time.

Since software engineering standards can be cited in an agreement between a
customer and a supplier and add additional legal requirements to the agreement, we
have not paraphrased the text of standards in our book, we have directly quoted the
text from the standards.

let &hbox {char '046}www.sqabook.org
http://www.sqabook.org

Acknowledgments

We would like to thank Professor Normand Séguin of the University of Quebec in
Montreal (UQAM), Mr. Jean-Marc Desharnais for allowing us to use an excerpt that
describes the implementation process of a measurement program, and many gradu-
ate students of the Masters in Software Engineering from the École de technologie
supérieure (ÉTS) who reviewed the chapters of this book and contributed through
their vast industry experience, analogies, and case studies to enrich the content.

We are also very grateful to Kathy Iberle for letting us use her description of
business models and their application in different business domains [IBE 02, IBE 03].
The business models are very helpful in understanding the risks facing a specific
business domain as well as the breadth and depth of software engineering practices
used to mitigate the risks. Finally, we would like to thank Karl Wiegers and Daniel
Galin for allowing us to use figures from their books.

xxiii

Chapter 1

Software Quality
Fundamentals

After completing this chapter, you will be able to:

– use the correct terminology to discuss software quality issues;

– identify the major categories of software errors;

– understand the different viewpoints regarding software quality;

– provide a definition of software quality assurance;

– understand software business models as well as their respective risks.

1.1 INTRODUCTION

Software is developed, maintained, and used by people in a wide variety of situations.
Students create software in their classes, enthusiasts become members of open-source
development teams, and professionals develop software for diverse business fields
from finance to aerospace. All these individual groups will have to address quality
problems that arise in the software they are working with. This chapter will provide
definitions for terminology and discuss the source of software errors and the choice
of different software engineering practices depending on an organization’s sector of
business.

Every profession has a body of knowledge made up of generally accepted princi-
ples. In order to obtain more specific knowledge about a profession, one must either:
(a) have completed a recognized curriculum or (b) have experience in the domain. For
most software engineers, software quality knowledge and expertise is acquired in a
hands-on fashion in various organizations. The Guide to the Software Engineering
Body of Knowledge (SWEBOK) [SWE 14] constitutes the first international con-
sensus developed on the fundamental knowledge required by all software engineers.

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

1

2 Chapter 1 Software Quality Fundamentals

Software quality

Software quality
fundamentals

Practical
considerations

Software quality
tools

Software quality
management
processes

Software
engineering
culture and ethics

Value and cost
of quality

Models and quality
characteristics

Software quality
improvement

Software
safety

Software
quality
assurance

Verification and
validation

Reviews and
audits

Software
quality
requirements

Defect
characterization

Software quality
management
techniques

Software quality
measurement

Figure 1.1 Software Quality in the SWEBOK® Guide [SWE 14].

Chapter 10 of SWEBOK is dedicated to software quality (see Figure 1.1) and its
first topic is labeled “fundamentals” and introduces the concepts and terminology
that form the underlying basis for understanding the role and scope of software qual-
ity activities. The second topic refers to the management processes and highlights
the importance of software quality across the life cycle of a software project. The
third topic presents practical considerations where various factors that influence plan-
ning, management, and selection of software quality activities and techniques are
discussed. Last, software quality related tools are presented.

1.2 DEFINING SOFTWARE QUALITY

Before explaining the components of software quality assurance (SQA), it is impor-
tant to consider the basic concepts of software quality. Once you have completed this
section, you will be able to:

– define the terms “software,” “software quality,” and “software quality assur-
ance”;

– differentiate between a software “error,” a software “defect,” and a software
“failure.”

Intuitively, we see software simply as a set of instructions that make up a pro-
gram. These instructions are also called the software’s source code. A set of programs

1.2 Defining Software Quality 3

forms an application or a software component of a system with hardware components.
An information system is the interaction between the software application and the
information technology (IT) infrastructure of the organization. It is the information
system or the system (e.g., digital camera) that clients use.

Is ensuring the quality of the source code sufficient for the client to be able to
obtain a quality system? Of course not; a system is far more complex than a sin-
gle program. Therefore, we must identify all components and their interactions to
ensure that the information system is one of quality. An initial response to the chal-
lenge regarding software quality can be found in the following definition of the term
“software.”

Software

1) All or part of the programs, procedures, rules, and associated documentation of an
information processing system.

2) Computer programs, procedures, and possibly associated documentation and data per-
taining to the operation of a computer system.

ISO 24765 [ISO 17a]

When we consider this definition, it is clear that the programs are only one part
of a set of other products (also called intermediary products or software deliverables)
and activities that are part of the software life cycle.

Let us look at each part of this definition of the term “software” in more detail:

– Programs: the instructions that have been translated into source code, which
have been specified, designed, reviewed, unit tested, and accepted by the
clients;

– Procedures: the user procedures and other processes that have been described
(before and after automation), studied, and optimized;

– Rules: the rules, such as business rules or chemical process rules, that had to
be understood, described, validated, implemented, and tested;

– Associated documentation: all types of documentation that is useful to cus-
tomers, software users, developers, auditors, and maintainers. Documentation
enables different members of a team to better communicate, review, test, and
maintain software. Documentation is defined and produced throughout the key
stages of the software life cycle;

– Data: information that is inventoried, modeled, standardized, and created in
order to operate the computer system.

4 Chapter 1 Software Quality Fundamentals

Software found in embedded systems is sometimes called microcode or
firmware. Firmware is present in commercial mass-market products and controls
machines and devices used in our daily lives.

Firmware

Combination of a hardware device and computer instructions or computer data that reside
as read-only software on the hardware device.

ISO 24765 [ISO 17a]

1.3 SOFTWARE ERRORS, DEFECTS, AND FAILURES

If you listen closely during various meetings with your colleagues, you will notice
that there are many terms that are used to describe problems with a software-driven
system. For example:

– The system crashed during production.

– The designer made an error.

– After a review, we found a defect in the test plan.

– I found a bug in a program today.

– The system broke down.

– The client complained about a problem with a calculation in the payment
report.

– A failure was reported in the monitoring subsystem.

Do all of these terms refer to the same concept or to different concepts? It is
important to use clear and precise terminology if we want to provide a specific mean-
ing to each of these terms. Figure 1.2 describes how to use these terms correctly.

Terminology of software defects

Inserted by a human Executed defect

Error Failure

Undetected error

Defect

Figure 1.2 Terminology recommended for describing software problems.

1.3 Software Errors, Defects, and Failures 5

Bug

Since the time of Thomas Edison, engineers have used the word “bug” to refer to failures
in the systems that they have developed. This word can describe a multitude of possible
problems. The first documented case of a “computer bug” involved a moth trapped in a
relay of the Mark II computer at Harvard University in 1947. Grace Hopper, the computer
operator, pasted the insect into the laboratory log, specifying it as the “First actual case
of a bug being found” (see the page of this log in the photograph below).

In the early 1950s, the terms “bug,” “debug,” and “debugging,” as applied to com-
puters and computer programs, started to appear in the popular press [KID 98].

Photograph from the Smithsonian National Museum of American History.

A failure (synonymous with a crash or breakdown) is the execution (or mani-
festation) of a fault in the operating environment. A failure is defined as the termi-
nation of the ability of a component to fully or partially perform a function that it
was designed to carry out. The origin of a failure lies with a defect hidden, that is,
not detected by tests or reviews, in the system currently in operation. As long as the
system in production does not execute a faulty instruction or process faulty data, it
will run normally. Therefore, it is possible that a system contains defects that have
not yet been executed. Defects (synonym of faults) are human errors that were not
detected during software development, quality assurance (QA), or testing. An error
can be found in the documentation, the software source code instructions, the logical
execution of the code, or anywhere else in the life cycle of the system.

6 Chapter 1 Software Quality Fundamentals

Error, Defect, and Failure

Error

A human action that produces an incorrect result (ISO 24765) [ISO 17a].

Defect

1) A problem (synonym of fault) which, if not corrected, could cause an application to
either fail or to produce incorrect results. (ISO 24765) [ISO 17a].

2) An imperfection or deficiency in a software or system component that can result in
the component not performing its function, e.g. an incorrect data definition or source
code instruction. A defect, if executed, can cause the failure of a software or system
component (ISTQB 2011 [IST 11]).

Failure

The termination of the ability of a product to perform a required function or its inability
to perform within previously specified limits (ISO 25010 [ISO 11i]).

Figure 1.3 shows the relationship between errors, defects, and failures in the soft-
ware life cycle. Errors may appear during the initial feasibility and planning stages of
new software. These errors become defects when documents have been approved and
the errors have gone unnoticed. Defects can be found in both intermediary products
(such as requirements specifications and design) and the source code itself. Failures
occur when an intermediary product or faulty software is used.

Case of Errors, Defects, and Failures

Case 1: A local pharmacy added a software requirement to its cash register to prevent
sales of more than $75 to customers owing more than $200 on their pharmacy credit
card. The programmer did not fully understand the specification and created a sales
limit of $500 within the program. This defect never caused a failure since no client
could purchase more than $500 worth of items given that the pharmacy credit card
had a limit of $400.

Case 2: In 2009, a loyalty program was introduced to the clients of American Sig-
nature, a large furniture supplier. The specifications described the following busi-
ness rules: a customer who makes a monthly purchase that is higher than the aver-
age amount of monthly purchases for all customers will be considered a Preferred
Customer. The Preferred Customer will be identified when making a purchase, and
will be immediately given a gift or major discount once a month. The defect intro-
duced into the system (due to a poor understanding of the algorithm to set up for

1.3 Software Errors, Defects, and Failures 7

Planning

Construction

User acceptance
testing

Move to
production

Errors Defects Failures

Unit and
integration

testing

Maintenance
and change to

production

Figure 1.3 Errors, defects, and failures in the software life cycle.
Source: Galin (2017). [GAL 17]. Adapted with permission of Wiley-IEEE Computer Society Press.

this requirement) involved only taking into account the average amount of current
purchases and not the customer’s monthly history. At the time of the software fail-
ure, the cash register was identifying far too many Preferred Clients, resulting in a
loss for the company.

Case 3: Peter tested Patrick’s program when Patrick was away. He found a defect in
the calculation for a retirement savings plan designed to apply the new tax-exemption
law for this type of investment. He traced the error back to the project specification
and informed the analyst. In this case, the test activity correctly identified the defect
and the source of the error.

8 Chapter 1 Software Quality Fundamentals

The three cases above correctly use the terms to describe software quality prob-
lems. They also identify issues that are investigated by researchers in the field of
software quality in order to discover means to help eliminate these problems:

– Errors can occur in any of the software development phases throughout the life
cycle.

– Defects must be identified and fixed before they become failures.

– The cause of failures, defects, and errors must be identified.

Life Cycle

Evolution of a system, product, service, project, or other human-made entity from con-
ception through retirement.

Development Life Cycle

Software life cycle process that contains the activities of requirements analysis, design,
coding, integration, testing, installation, and support for acceptance of software products.

ISO 12207 [ISO 17]

During software development, defects are constantly being involuntarily intro-
duced and must be located and corrected as soon as possible. Therefore, it is useful
to collect and analyze data on the defects found as well as the estimated number of
defects left in the software. By doing so, we can improve the software engineering
processes and in turn, minimize the number of defects introduced in new versions of
software products in the future.

Methods for classifying defects have been created for this purpose, one of which
is explained in the chapter on verification and validation.

Undetected Hole in the Ozone Layer

The hole in the ozone layer over Antarctica went unnoticed for a long period of time
because the TOMS data analysis software used by NASA as part of its project to map
the ozone layer had been designed to ignore values that deviate significantly from the
anticipated measurements.

The project was launched in 1978, but it was only in 1985 that the hole was discov-
ered, and not by NASA. Following data analysis, NASA confirmed this design error.

http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_
sensing5.php

http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php

1.3 Software Errors, Defects, and Failures 9

Depending on the business model of your organization, you will have to allow
for varying degrees of effort in identifying and correcting defects. Unfortunately,
there exists today a certain culture of tolerance for software defects. However, there
is no question that we all want Airbus, Boeing, Bombardier, and Embraer to have
identified and corrected all the defects in the software for their airplanes before we
board them!

Many researchers have studied the source of software errors and have published
studies classifying software errors by type in order to evaluate the frequency of each
type of error. Beizer (1990) [BEI 90] provides a study that has combined the result
of several other studies to provide us with an indication of the origin of errors. The
following is a summarized list of this study’s results [BEI 90].

– 25% structural;

– 22% data;

– 16% functionalities implemented;

– 10% construction/coding;

– 9% integration;

– 8% requirements/functional specifications;

– 3% definition/running tests;

– 2% architecture/design;

– 5% unspecified.

Researchers also try to determine how many errors can be expected in a typi-
cal software. McConnell (2004) [MCC 04] suggested that this number varied based
on the quality and maturity of the software engineering processes as well as the
training and competency of the developers. The more mature the processes are, the
fewer errors are introduced into the development life cycle of the software. Humphrey
(2008) [HUM 08] also collected data from many developers. He found that a devel-
oper involuntarily creates about 100 defects for each 1000 lines of source code writ-
ten. In addition, he noted large variations for a group of 800 experienced developers,
that is, from less than 50 defects to more than 250 defects injected per 1000 lines
of code. At Rolls-Royce, the manufacturer of airplane engines, the variation pub-
lished is from 0.5 to 18 defects per 1000 lines of source code [NOL 15]. The use of
proven processes, competent and well-trained developers, and the reuse of already
proven software components can considerably reduce the number of errors of a
software.

McConnell also referenced other studies that have come to the following
conclusions:

– The scope of most defects is very limited and easy to correct.

– Many defects occur outside of the coding activity (e.g., requirement, architec-
ture activities).

10 Chapter 1 Software Quality Fundamentals

– Poor understanding of the design is a recurrent problem in programming error
studies.

– It is a good idea to measure the number and origin of defects in your organiza-
tion to set targets for improvement.

Therefore, errors are the main cause of poor software quality. It is important to
look for the cause of error and identify ways in which to prevent these errors in the
future. As we have shown in Figure 1.3, errors can be introduced at each step of the
software life cycle: errors in the requirements, code, documentation, data, tests, etc.
The causes are almost always human mistakes made by clients, analysts, designers,
software engineers, testers, or users. SQA will need to develop a classification of the
causes of software error by category which can be used by everyone involved in the
software engineering process.

For example, here are eight popular error-cause categories:

1) problems with defining requirements;

2) maintaining effective communication between client and developer;

3) deviations from specifications;

4) architecture and design errors;

5) coding errors (including test code);

6) non-compliance with current processes/procedures;

7) inadequate reviews and tests;

8) documentation errors.

Each of the eight categories of error causes listed above is described in more
detail in the following sections.

1.3.1 Problems with Defining Requirements

Defining software requirements is now considered a specialty, which means a busi-
ness analyst or a software engineer specialized in requirements. Requirements defi-
nition is the topic of interest groups as well as the subject of professional certification
programs (see http://www.iiba.org).

There are a certain number of problems related to the clear, correct, and concise
writing of requirements so that they can be converted into specifications that can be
directly used by colleagues, such as architects, designers, programmers, and testers.

It must also be understood that there are a certain number of activities that must
be mastered when eliciting requirements:

– identifying the stakeholders (i.e., key players) who must participate in the
requirements elicitation;

– managing meetings;

– interview techniques that can identify differences between wishes, expecta-
tions, and actual needs;

let &hbox {char '046}http://www.iiba.org
http://www.iiba.org

1.3 Software Errors, Defects, and Failures 11

Totality of software requirements

Functional Nonfunctional

Wishes, expectations,
and needs

What needs to be executed

• Domain knowledge and business rules
• Organizational and operational environment
• Interviews, brainstorming, and facilitated meetings
• Observation, user stories, and scenarios
• Requirements classification and documentation

Quality requirements

Constraints

Obligations

Software requirements management, elicitation,
analysis, specification, and validation:

Figure 1.4 Context of software requirements elicitation.

– clear and concise documentation of functional requirements, performance
requirements, obligations, and properties of future systems;

– applying systematic techniques for requirement elicitation;

– managing priorities and changes (e.g., changes to requirements).

It is clear that errors can arise when eliciting requirements. It can be difficult
to cater to the wishes, expectations, and needs of many different user groups at the
same time (see Figure 1.4). Therefore, it is important to pay particular attention to
erroneous requirement definitions, the lack of definitions for critical obligations and
software characteristics, the addition of unnecessary requirements (e.g., those not
requested by the customer), the lack of attention to business priorities, and fuzzy
requirements descriptions.

Ordering Soup

Let us say you order soup at a restaurant. Your expressed requirement is “I would like the
soup of the day.” But in fact, unexpressed wishes, expectations, and needs include: not
too hot, not too cold; soup that is not too salty; utensils, salt, and pepper available on the
table; clean washrooms; a well situated table; a quiet environment.

And that was a simple requirement, imagine a complex software!

12 Chapter 1 Software Quality Fundamentals

A requirement is said to be of good quality when it meets the following charac-
teristics:

– correct;

– complete;

– clear for each stakeholder group (e.g., the client, the system architect, testers,
and those who will maintain the system);

– unambiguous, that is, same interpretation of the requirement from all stake-
holders;

– concise (simple, precise);

– consistent;

– feasible (realistic, possible);

– necessary (responds to a client’s need);

– independent of the design;

– independent of the implementation technique;

– verifiable and testable;

– can be traced back to a business need;

– unique.

We will present techniques to help detect defects in requirements documentation
in a later chapter concerning reviews.

We must also ensure that we are not looking for the Holy Grail of the perfect
specification, since we do not always have the time or means, or the budget, to achieve
this level of perfection.

The article by Ambler [AMB 04] entitled “Examining the Big Requirements Up
Front Approach” suggests that it is sometimes ineffective to write detailed require-
ments early in the life cycle of a software project. He claims that this traditional
approach increases the risk of a project’s failure. He stipulates that a large percentage
of these specifications are not integrated in the final version of the software and that
the corresponding documentation is rarely updated during the project. He thus asserts
that this way of working is outdated. In his article, he recommends using more recent
agile techniques, such as Test-Driven Development, in order to produce a minimum
amount of paper documentation.

We have observed that software analysts and designers also often use prototyp-
ing, which helps to partially eliminate the traditional requirements document and
replace it with a set of user interfaces and test cases that describe the requirements,
architecture, and software design to be developed. Prototypes prove useful for pin-
pointing what the client is envisioning and getting valuable feedback early in the
project. In the next section, the development practices adopted by different business
sectors will be discussed.

1.3 Software Errors, Defects, and Failures 13

In a system with hardware and software components, requirements are developed at the
system level and then allocated to hardware, software, and sometimes to an operator. The
following figure illustrates the interactions between system, hardware, and software life
cycle processes.

Systems engineering must work in close collaboration with hardware and software
engineering during the allocation of system requirements (for example, functionalities
and quality requirements such as safety and performance) to hardware and software.

Software life cycle
processes

System life cycle processes

Hardware life cycle
processes

1.3.2 Maintaining Effective Communications Between
Client and Developer

Errors can also occur in intermediary products due to involuntary misunderstandings
between software personnel and clients and users from the outset of the software
project. Software developers and software engineers must use simple, non-technical
language and try to take into account the user’s reality. They must be aware of all
signs of lack of communication, on both sides. Examples of these situations are:

– poor understanding of the client’s instructions;

– the client wants immediate results;

– the client or the user does not take the time to read the documentation sent to
him;

– poor understanding of the changes requested from the developers during
design;

– the analyst stops accepting changes during the requirements definition and
design phase, given that for certain projects 25% of specifications will have
changed before the end of the project.

To minimize errors:

– take notes at each meeting and distribute the minutes to the entire project team;

– review the documents produced;

14 Chapter 1 Software Quality Fundamentals

– be consistent with your use of terms and develop a glossary of terms to be
shared with all stakeholders;

– inform clients of the cost of changing specifications;

– choose a development approach that allows you to accept changes along the
way;

– number each requirement and implement a change management process (as it
will be presented in another chapter).

This book includes a glossary that could be used to develop the glossary for a specific
project.

HVCCR is a company dedicated to the online sale of specialized ventilation, refrigeration,
and air-conditioning tools. A client contacted the company that maintained its web catalog
to update a few images and add some recent products. The task was estimated to take 10–
20 minutes of work.

The person in charge of maintaining the web catalog contacted the client and
informed him that to complete the update of the changes requested, the server would
have to be restarted, which could cancel any current sessions. This work should prefer-
ably be done at night. The client, who did not fully grasp the impact of his request, insisted
on having this update performed immediately. At the time of the update, several buyers
were online processing payments. Shutting down the system interrupted bank transac-
tions, causing customer dissatisfaction as well as data corruption. HVCCR took several
days to address buyers’ complaints and fix the problems.

1.3.3 Deviations from Specifications

This situation occurs when the developer incorrectly interprets a requirement and
develops the software based on his own understanding. This situation creates errors
that unfortunately may only be caught later in the development cycle or during the
use of the software.

Other types of deviations are:

– reusing existing code without making adequate adjustments to meet new
requirements;

1.3 Software Errors, Defects, and Failures 15

– deciding to drop part of the requirements due to budget or time pressures;

– initiatives and improvements introduced by developers without verifying with
clients.

1.3.4 Architecture and Design Errors

Errors can be inserted in the software when designers (system and data architects)
translate user requirements into technical specifications. The typical design errors
are:

– an incomplete overview of the software to be developed;

– unclear role for each software architecture component (responsibility, commu-
nication);

– unspecified primary data and data processing classes;

– a design that does not use the correct algorithms to meet requirements;

– incorrect business or technical process sequence;

– poor design of business or process rule criteria;

– a design that does not trace back to requirements;

– omission of transaction statuses that correctly represent the client’s process;

– failure to process errors and illegal operations, which enables the software to
process cases that would not exist in the client’s sector of business—up to 80%
of program code is estimated to process exceptions or errors.

1.3.5 Coding Errors

Many errors can occur in the construction of software. McConnell (2004) [MCC 04]
devotes a substantial part of his book “Code Complete” to describing effective tech-
niques for creating quality source code. He describes common programming errors
and inefficiencies. According to McConnell, the typical programming errors are:

– inappropriate choice of programming language and conventions;

– not addressing how to manage complexity from the onset;

– poor understanding/interpretation of design documents;

– incoherent abstractions;

– loop and condition errors;

– data processing errors;

– processing sequence errors;

– lack of or poor validation of data upon input;

16 Chapter 1 Software Quality Fundamentals

– poor design of business rule criteria;

– omission of transaction statuses that are required to truly represent the client
process;

– failure to process errors and illegal operations, which enables the software to
process cases that would not exist in the client’s sector of business;

– poor assignment or processing of the data type;

– error in loop or interfering with the loop index;

– lack of skills in dealing with extremely complex nestings;

– integer division problem;

– poor initialization of a variable or pointer;

– source code that does not trace back to design;

– confusion regarding an alias for global data (global variable passed on to a
subprogram).

1.3.6 Non-Compliance with Current
Processes/Procedures

Some organizations have their own internal methodology and internal standards for
developing/acquiring software. This internal methodology describes processes, pro-
cedures, steps, deliverables, templates, and standards (e.g., coding standard) that
must be considered for software acquisition, development, maintenance, and oper-
ations. Of course, in a less mature organization, these processes/procedures will not
be clearly defined.

We can therefore ask ourselves the following question: How can not fulfilling
the requirements related to an internal methodology lead to defects in software?
We must think in terms of the total life cycle (e.g., over many decades for sub-
ways and commercial airplanes) of the software, and not just of its initial devel-
opment. It is clear that someone who only programs code appears to be far more
productive than someone who develops intermediary products, such as requirements,
test plans, and user documentation, as prescribed by the internal methodology of an
organization. However, the immediate productivity would be disadvantageous in the
long run.

Undocumented software will give rise to the following problems sooner or
later:

– When members of the software team need to coordinate their work, they will
have difficulty understanding and testing poorly documented or undocumented
software.

– The person who replaces or maintains the software will only have the source
code as a reference.

1.3 Software Errors, Defects, and Failures 17

– SQA will find a large number of non-conformities (with respect to the internal
methodology) regarding this software.

– The test team will have problems developing test plans and scenarios, primarily
because the specifications are not available.

1.3.7 Inadequate Reviews and Tests

The purpose of software reviews and tests is to identify and check that errors and
defects have been eliminated from the software. If these activities are not effective,
the software delivered to the client will likely be prone to failure.

All kinds of issues can crop up when reviewing and testing software:

– reviews only cover a very small part of the software’s intermediate deliverables;

– reviews do not identify all errors found in the documentation and software
code;

– the list of recommendations stemming from reviews is not implemented or
followed up on adequately;

– incomplete test plans do not adequately cover the entire set of functions of the
software, leaving parts untested;

– the project plan has not left much time to perform reviews or tests. In some
cases, this step is shortened because it is wedged between coding and the final
delivery. Delays in the early steps of the project do not always mean the delivery
date will be extended, to the detriment of proper testing;

– the testing process does not correctly report the errors or defects found;

– the defects found are corrected, but are not subject to adequate regression test-
ing (i.e., retesting the complete corrected software) thereafter.

1.3.8 Documentation Errors

It has been recognized that obsolete or incomplete documentation for software being
used in an organization is a common problem. Few development teams enjoy spend-
ing time preparing and reviewing documentation.

We would be inclined to say no to the question “does software wear out?” Indeed,
the 0s and 1s found in the memories do not wear out from use as with hardware.
In addition to classifying types of errors, it is important to understand the typical
reliability curve for software. Figure 1.5 describes the reliability curve for computer
hardware as a function of time. This curve is called a U-shaped or bathtub curve. It
represents the reliability of a piece of equipment, such as a car, throughout its life
cycle.

With regard to software, the reliability curve resembles more of what is shown
in Figure 1.6. This means that software deterioration occurs over time due to, among
other things, numerous changes in requirements.

18 Chapter 1 Software Quality Fundamentals
F

a
il

u
re

 r
a

te

Wear outUseful lifeInfant
mortality

Time

Figure 1.5 Reliability curve
for hardware as a function of
time.
Source: Adapted from Pressman
2014. [PRE 14].

F
a

il
u

re
 r

a
te

Increased failure rate
due to side effects

Change

Actual curve

Idealized curve

Time

Figure 1.6 Reliability curve of
software.
Source: Adapted from Pressman
2014. [PRE 14].

Professor April worked in the Middle East between 1998 and 2003 in a large telecom-
munications company. When he arrived, he noticed that the original documentation for
critical application software for the telephone company had not been updated in over
10 years. There was no software quality assurance function in the information technol-
ogy division of that company.

In conclusion, we see that there are many sources of potential errors, and that
without SQA, these defects may result in failures if not discovered.

1.4 Software Quality 19

1.4 SOFTWARE QUALITY

The previous section, which presented the issues with identifying defects, has laid
the ground work for our next discussion, namely software quality. How do we define
software quality? The standards groups suggest the following definition.

Software Quality

Conformance to established software requirements; the capability of a software product
to satisfy stated and implied needs when used under specified conditions (ISO 25010
[ISO 11i]).

The degree to which a software product meets established requirements; however,
quality depends upon the degree to which those established requirements accurately rep-
resent stakeholder needs, wants, and expectations [Institute of Electrical and Electronics
Engineers (IEEE 730)] [IEE 14].

The second definition in the text box is very different, despite appearances. The
first part of the definition comes from the perspective of Crosby who reassures the
software engineer with its strictness. This perspective is: “If I deliver all that is speci-
fied in the requirements document, then I will have delivered quality software.” How-
ever, the second part of this definition is from the quality perspective of Juran, which
specifies that one must satisfy the client’s needs, wants, and expectations that are not
necessarily described in the requirements documentation!

These two points of view force the software engineer to establish the kind of
agreement that must describe client’s requirements and attempt to faithfully reflect
his needs, wants, and expectations. Of course, there is a practical element to the func-
tional characteristics that need to be described, but also implicit characteristics, which
are expected of any professionally developed piece of software.

In this context, the software engineer can be inspired by the standards in his field,
just as his colleagues in construction engineering or other engineering specialties,
in order to identify his obligations. Process conformance can be achieved and mea-
sured. As an example, Professor April published an example of the measurement, in
Ouanouki and April (2007) [OUA 07], where the software testing process had to be
assessed for Sarbanes-Oxley conformance for the largest Canadian hardware retailer.

Software quality is recognized differently depending on each perspective, includ-
ing that of the clients, maintainers, and users. Sometimes, it is necessary to differen-
tiate between the client, who is responsible for acquiring the software, and the users,
who will ultimately use it.

Users seek, among other things, functionalities, performance, efficiency, accu-
rate results, reliability, and usability. Clients typically focus more on costs and dead-
lines, with a view to the best solution at the best price. This can be considered an
external point of view with regard to quality. To draw a parallel with the automobile

20 Chapter 1 Software Quality Fundamentals

industry, the user (driver) will go to the garage that provides him with fast service,
quality, and a good price. He has a non-technical point of view.

As for software specialists, they focus more on meeting obligations based on the
allocated budget. Therefore, they see their obligations from the point of view of meet-
ing requirements and the terms and conditions of the agreement. The choice of the
right tools and modern techniques are often at the heart of concerns, and is therefore
an internal point of view like that of a mechanic who is interested in the engine tech-
nology and knows it in detail. To him or her, quality is equally important with regard
to the choice and assembly of components. We will consider these two points of
view (external versus internal) when discussing the software product quality models.

Therefore, quality software is software that meets the true needs of the stake-
holders while respecting any predefined cost and time constraints.

The client’s need for software (or more generally any kind of system) may be
defined at four levels:

– True needs

– Expressed needs

– Specified needs

– Achieved needs

The ability of software to meet (or not meet) the needs of the client can be
described in the differences between these four levels. Throughout the development
of a project, there will be factors that will affect the final quality.

For each level, Table 1.1 describes the typical factors that can affect the satisfac-
tion of the client requirements.

1.5 SOFTWARE QUALITY ASSURANCE

This section presents a definition of SQA. This section also aims to describe the objec-
tives of SQA. In order to put these definitions into perspective, here is a reminder of
the general definition of software engineering:

Software Engineering

The systematic application of scientific and technological knowledge, methods, and expe-
rience for the design, implementation, testing, and documentation of software.

ISO 24765 [ISO 17a]

To be a recognized profession, software engineering must have its own body
of knowledge for which there is consensus. As with most other engineering fields,
recognized knowledge, methods, and standards must be used for the development,
maintenance/evolution, and infrastructure/operation of software. The body of

1.5 Software Quality Assurance 21

Table 1.1 Factors that can Affect Meeting the True Requirements of the Client [CEG 90]
(© 1990 - ALSTOM Transport SA)

Type of
requirement Origin of the expression Main causes of difference

True Mind of the stakeholders – Unfamiliarity with true requirements

– Instability of requirements

– Different viewpoints of ordering party and users

Expressed User requirements – Incomplete specification

– Lack of standards

– Inadequate or difficult communication with the
ordering party

– Insufficient quality control

Specified Software Specification
Document

– Inappropriate use of management and
production methods, techniques, and tools

– Insufficient tests

– Insufficient quality control techniques
Achieved Documents and Product

Code

knowledge for software engineering is published in the SWEBOK guide
(www.swebok.org). An entire chapter is dedicated to SQA.

Quality Assurance

1) a planned and systematic pattern of all actions necessary to provide adequate confi-
dence that an item or product conforms to established technical requirements;

2) a set of activities designed to evaluate the process by which products are developed or
manufactured;

3) the planned and systematic activities implemented within the quality system, and
demonstrated as needed, to provide adequate confidence that an entity will fulfill
requirements for quality.

ISO 24765 [ISO 17a]

Software Quality Assurance

A set of activities that define and assess the adequacy of software processes to provide
evidence that establishes confidence that the software processes are appropriate for and
produce software products of suitable quality for their intended purposes. A key attribute
of SQA is the objectivity of the SQA function with respect to the project. The SQA func-
tion may also be organizationally independent of the project; that is, free from technical,
managerial, and financial pressures from the project.

IEEE 730 [IEE 14]

let &hbox {char '046}www.swebok.org
http://www.swebok.org

22 Chapter 1 Software Quality Fundamentals

The term “software quality assurance” could be a bit misleading. The implemen-
tation of software engineering practices can only “assure” the quality of a project,
since the term “assurance” refers to “grounds for justified confidence that a claim has
been or will be achieved.” In fact, QA is implemented to reduce the risks of develop-
ing a software that does not meet the wants, needs, and expectations of stakeholders
within budget and schedule.

This perspective of QA, in terms of software development, involves the following
elements:

– the need to plan the quality aspects of a product or service;

– systematic activities that tell us, throughout the software life cycle, that certain
corrections are required;

– the quality system is a complete system that must, in the context of qual-
ity management, allow for the setting up of a quality policy and continuous
improvement;

– QA techniques that demonstrate the level of quality reached so as to instill
confidence in users; and lastly,

– demonstrate that the quality requirements defined for the project, for the change
or by the software department have been met.

In addition to software development, SQA can also focus on the mainte-
nance/evolution and infrastructure/operations of software. A typical quality system
should include all software processes from the most general (such as governance)
to the most technical (e.g., data replication). QA is described in standards such as
ISO 12207 [ISO 17], IEEE 730 [IEE 14], ISO 9001 [ISO 15], and exemplary prac-
tices models, such as CobiT [COB 12] and the Capability Maturity Model Integration
(CMMI) models that will be presented in a later chapter.

1.6 BUSINESS MODELS AND THE CHOICE OF
SOFTWARE ENGINEERING PRACTICES

In this section, Iberle (2002) [IBE 02], a senior test engineer at Hewlett-Packard,
describes her experience in two business sectors of the same company: cardiology
products and printers. Different business models are then described to help us under-
stand the risks and the respective needs of each business sector with regards to soft-
ware practices. These business models will be used in the following chapters to help
choose or adapt software practices according to the context of a specific project or
application domain.

1.6 Business Models and the Choice of Software Engineering Practices 23

Business Model

A business model describes the rationale of how an organization creates, delivers, and
captures value (economic, social, or other forms of value). The essence of a business
model is that it defines the manner by which the business enterprise delivers value to
customers, entices customers to pay for value, and converts those payments to profit.

Adapted from Wikipedia

Knowledge of the business models and organizational culture will help the reader
to [IBE 02]:

– evaluate the effectiveness of new practices for an organization or specific
project;

– learn software practices from other fields or cultures;

– understand the context that promotes collaboration with members of other
cultures;

– more easily integrate into a new job within another culture.
This section concludes with a brief discussion of exemplary software practices.

1.6.1 Description of the Context

Medical products belong to a field known for its very high quality standards. During
a mandate in the cardiology products sector, Iberle (2002) [IBE 02] used a large num-
ber of traditional practices described in software engineering manuals, for example:
detailed written specifications, intensive use of inspections and reviews throughout
the life cycle, and exhaustive tests for requirements. Exit criteria were created at the
beginning of the project and a product could not be shipped as long as the exit criteria
were not met.

In this field, a project end date can be missed by weeks and even months. These
delays are acceptable in order to fix any last-minute problems using a long checklist.
It was far from painless. Iberle (2002) [IBE 02] explains that she worked many extra
hours to try to be on schedule (and not exceed the deadline too much). There were
heated debates as to whether a specific defect should be qualified as severe (level 1
severity) or average (level 2–5 severity). However, in the end, quality always won out
over the schedule.

After 8 years of working on medical products, Iberle (2002) [IBE 02] was
assigned to the business sector that produced printers and served small businesses
and consumers. Practices in this business sector of the company were very different.

24 Chapter 1 Software Quality Fundamentals

For example, specifications were far shorter, project exit criteria significantly less for-
mal, but making the delivery date was very important. While Iberle was working in
testing, she noticed differences in test practices. The main test effort was not focused
on tests related to specifications. They were not trying to test all possible entry com-
binations. There was far less test documentation. In fact, some testers had no test
procedures. This was a huge culture shock. At first, Iberle would walk around shak-
ing her head, and grumbling “These people don’t care about quality!" After a while,
she started to see that her definition of quality was different and was based on her
experience in a different field. It was time for her to revisit her beliefs about software
quality.

1.6.2 Anxiety and Fear

When Iberle (2003) [IBE 03] worked on defibrillators and cardiographs, missing a
delivery date was not the worst thing that could happen. What really scared the team
was what could kill a patient or technician due to an electrical shock, cause a person
to come to the wrong diagnosis, or that the device could not be used in an emergency
situation. If the team raised the possibility of a failure, the delivery date was automat-
ically pushed forward, without any discussion whatsoever. Lengthy and costly efforts
to find and definitely eliminate the cause of the defect were systematically approved.
It was obvious that, for an organization in this business sector, shirking one’s legal
responsibility or being blamed by the American Food and Drug Administration defi-
nitely contributed to these decisions. Delivery dates could be changed and production
completed with overtime.

In the consumer products division, the reality was quite different. The potential
for injury was very low, even in the worst conditions imaginable. The real concern
was not respecting schedules or exceeding costs. When software has to be packaged
in hundreds of thousands of boxes and these boxes must be sent to resellers on time
for the day of a major sale, there is not much room to “play catch up.” Another fear
was having thousands of users unable to install their new printer and calling customer
support lines the day after Christmas. Incompatibility between the most popular soft-
ware and hardware was another source of concern.

So these two business divisions had different definitions of “quality.” Clients val-
ued different things: clients from the medical sector favored accuracy and reliability
above all, whereas printer customers looked for user-friendliness and compatibility
far more than reliability. Of course, everyone wants reliability. However, whether
they are aware of it or not, people value reliability as a function of the pain that cer-
tain problems may cause them. People are not happy when they have to restart their
computer from time to time, but their misfortune is nothing in comparison with the
anguish of a patient faced with a functional problem with a heart defibrillator. When
someone goes into fibrillation, there is a 5–6 minute window for saving the patient.
So there is no time to lose with equipment problems.

1.6 Business Models and the Choice of Software Engineering Practices 25

The definition of “reliability” is therefore also very different in these two busi-
ness sectors. When it was understood that no one would die from a printer software
error, the team examined the software practices in the medical products division to
determine whether they were also useful in the printer sector [IBE 03]. It would take
Iberle several months to realize that what seemed shoddy in the printer sector was
a way of dealing with different priorities that did not carry the same weight as for
medical products.

1.6.3 Choice of Software Practices

As expected, people from both business sectors chose software engineering practices
that would lower the probability of their worst fears. Since their apprehensions are
different, their practices are also different. In fact, in light of their fears, the choice
of practices starts to make sense. The fear of a false diagnosis leads to many detailed
reviews and various types of tests. However, the fear of confusing printer users results
in more usability tests.

It is not surprising to see that people who work in the same business sectors
have similar concerns and use similar practices. Certain concerns can also be found
in other organizations. For example, the aerospace sector and medical sector are very
closely related. It is also possible for the same organization to have different fears
and values in different business sectors, as Iberle (2003) [IBE 03] described above of
her employment at Hewlett-Packard.

Software organizations or software specialists are divided into groups that appre-
ciate similar things or share the same concerns, based on similarities in client and
business community expectations. These cultures are called “practice groups,” that is,
software development groups, which share common definitions of quality and tend
to use similar practices.

1.6.4 Business Model Descriptions

The following models were developed by Iberle to better understand the need for
QA in different business sectors, given that the way in which money flows through
an organization (e.g., contract income, cost of products delivered, and losses) and
how profits are generated affect the choice of the software practices used to develop
products for an organization. The five main business models in the software industry
are [IBE 03]:

– Custom systems written on contract: The organization makes profits by selling
tailored software development services for clients (e.g., Accenture, TATA, and
Infosys).

– Custom software written in-house: The organization develops software to
improve organizational efficiency (e.g., your current internal IT organization).

26 Chapter 1 Software Quality Fundamentals

– Commercial software: The company makes profits by developing and selling
software to other organizations (e.g., Oracle and SAP).

– Mass-market software: The company makes profits by developing and selling
software to consumers (e.g., Microsoft and Adobe).

– Commercial and mass-market firmware: The company makes profits by selling
software in embedded hardware and systems (e.g., digital cameras, automobile
braking system, and airplane engines).

1.6.5 Description of Generic Situational Factors

Each business model has a set of attributes or factors that are specific to it. Here is
a list of situational factors that seem to influence the choice of software engineering
practices in general [IBE 03]:

– Criticality: The potential to cause harm to the user or prejudice the interests of
the purchaser varies depending on the type of product. Some software may kill
a person if it shuts down; other software programs may result in major money
losses for many people; others will make a user waste time.

– Uncertainty of users’ wants and needs: The requirements for software that
implements a familiar process in an organization are better known than the
requirements for a consumer product that is so new that the end-users do not
even know what they want.

– Range of environments: Software written for use in a specific organization only
has to be compatible with its own computer environment, whereas software
sold to a mass market must work in a wide range of environments.

– Cost of fixing errors: Distributing corrections for certain software applications
(e.g., embedded software of an automobile) is usually far more costly than
fixing a website.

– Regulations: Regulatory bodies and contractual clauses may require the use of
software practices other than those that would normally be adopted. Certain
situations require process audits to check whether a process was followed at
the time of producing the software.

– Project size: Projects that take several years and require hundreds of developers
are common in certain organizations, whereas in other organizations, shorter
projects developed by a single team are more typical.

– Communication: There are a certain number of factors, in addition to project
scope, that can increase the quantity of person-to-person communication or
make communications more difficult. Certain factors seem to occur more often
within certain cultures, whereas others happen at random:
◦ Concurrent developer–developer communication: Communication with

other people on the same project is affected by the way in which the work is

1.6 Business Models and the Choice of Software Engineering Practices 27

distributed. In certain organizations, senior engineers design the software and
junior staff carries out the coding and unit tests (instead of having the same
person carrying out the design, coding, and unit tests for a given component).
This practice increases the quantity of communications between developers.

◦ Developer–maintainer communication: Maintenance and enhancements
require communication with the developers. Communication with develop-
ers is greatly facilitated when they work in the same area.

◦ Communication between managers and developers: Progress reports must be
sent to upper management. However, the quantity of information and form
of communication that managers believe they need may vary substantially.

– Organization’s culture: The organization has a culture that defines how people
work. There are four types of organizational cultures:
◦ Control culture: control cultures, such as IBM and GE, are motivated by the

need for power and security.
◦ Skill culture: A culture of skill is defined by the need to make full use of

one’s skills: Microsoft is a good example.
◦ Collaborative culture: A collaborative culture, as illustrated by Hewlett-

Packard, is motivated by a need to belong.
◦ Thriving culture: A thriving culture is motivated by self-actualization, and

can be seen in start-up organizations.

1.6.6 Detailed Description of Each Business Model

This section goes into more detail about each of the five main business models. A
single business model, contract-based development for made-to-measure systems, is
described as an in-depth case study. For this business model, we describe the follow-
ing four perspectives:

– context;

– situational factors;

– concerns; and

– software practices predominately used in this business model.

For the other four business models, we will only consider the context and
concerns.

1.6.6.1 Custom Systems Written on Contract

In a fixed-price contract, Iberle (2003) [IBE 03] indicated that the client specifies
exactly what he wants and promises the supplier a given sum of money. The profits
made by the supplier depend on his ability to remain within budget and to deliver on
schedule, as defined in the contract, a product that performs as intended. Large-scale

28 Chapter 1 Software Quality Fundamentals

applications and military software are often written under contract. The software pro-
duced in this business culture is often critical software. The cost of distributing fixes
after delivery is manageable because the corrections are provided to an environment
that is known and accessible, and to a reasonable number of sites.

Critical Software

Software having the potential for serious impact on the users or environment due to factors
including safety, performance, and security.

Adapted from ISO 29110 [ISO 16f]

Critical System

System having the potential for serious impact on the users or environment due to factors
including safety, performance, and security.

ISO 29110 [ISO 16f]

Following is the list of dominating factors in this business model [IBE 03]:

– Criticality: Software failures in financial systems can seriously compromise
the client’s business interests. Software defects in planes and military systems
may endanger lives, even if many software programs purchased by the Defense
Department are business software applications whose failure would have the
same impact as that in financial systems.

– Uncertainty of user needs and requirements: Since buyers and users are an
identifiable group, they can be contacted to find out what they are looking for.
In general, they have a relatively clear idea of what they want. However, the
process to put this into place is not always well documented, and users may not
agree on the steps in the process, their demands may require technology that
does not exist, business needs may change during the project, and sometimes
people completely change their minds.

– Range of environments: In general, the purchasing organization has identified
a small set of target environments in order to avoid cost increases. The result is
a range of environments that are clearly defined and relatively small, compared
with other cultures.

– Cost of fixing errors: In general, there are inexpensive ways of distributing
fixes—a large portion of the software will be on servers in a given building
and the client’s software location is generally known.

– Regulations: Defense software (e.g., for a fighter or commercial plane) must
comply with a huge list of regulations, most of which concern the software
development process. Financial software is not subject to regulations in the

1.6 Business Models and the Choice of Software Engineering Practices 29

same way. It is common that the contract will stipulate process audits to prove
that the organization followed its development process. The client expects to
receive regular progress reports on the project.

– Project size: Often large or even immense. Several dozen people work for more
than 2 years on the average-size project, but hundreds of people over several
years are required for large projects. There is also some data that indicates that
small projects are far more common than large projects.

– Communication: The practice involving dividing architecture and coding
between senior and junior professionals is occasionally observed in this cul-
ture. Given that the systems and projects are large, often different people and
even separate departments are used for analysis, design, etc. Moreover, main-
tenance contracts can go to people other than the original developers. This may
produce competition and make communications more complex. Organizations
that develop software are often large, whether their projects are small or large,
which means additional hierarchical levels.

– Organizational culture: Organizations that write software on contract often
have a control culture. This seems logical since most of them have ties with
the military.

The concerns of the developers of these systems are often:

– incorrect results;

– exceeding budget;

– penalties for late delivery, and

– not delivering what the client asked for (which may lead to legal proceedings).

These situational factors lead to certain assumptions regarding this business
model:

– delivery on schedule and within budget is imperative;

– reliable, correct software is imperative;

– requirements must be known and detailed from the project onset;

– projects are typically large scale with many communication channels;

– it is necessary to show that what was promised has indeed been delivered;

– plans must be developed, and regular progress reports prepared (which are sent
to project management and the client).

In the text above, we presented three perspectives: context; situational factors;
and concerns about the first business model.

In the next few paragraphs, we present the prevailing practices used with the
business model of this case study.

30 Chapter 1 Software Quality Fundamentals

These practices are taken from [IBE 03]:

– A lot of documentation
Documentation is a valuable way of communicating when the project size

is large and when external suppliers are involved. Written documentation is
often far more effective than discussions around the cooler when the commu-
nication channels are complex, which occurs when people are geographically
remote and in different organizations. In addition, certain documents are often
necessary to prove that we are doing what was set out in the contract. Lastly, in
order for the requirements to be known in detail at the start of the project, docu-
mentation and many reviews of the requirements are necessary before respond-
ing to the call for tenders.

– Lists of exemplary practices
Lists of exemplary practices, such as the CobiT [COB 12] and CMMI

models, developed by the Software Engineering Institute, are used to develop
contractual clauses. For example, in this business model, the focus is on project
estimating and management in order to be on schedule and within budget as
stipulated in the contract, and regular progress reports are necessary.

– Waterfall development cycle
The waterfall development life cycle was invented in the 1950s to provide

enough structure for large IT projects to be able to plan and strategize on-time
delivery. The new iterative and agile development cycles plan out development
in smaller increments, which allow for planning while offering more flexibility
as to delivery. However, as it has been observed, in this business model, cascade
development is often the preferred method.

– Project audits
Audits are often specified in the contract for this business model. The audit

is used to prove to the client, or during legal proceedings, that the contractual
clauses, such as respecting schedules, quality, and functions, have been ful-
filled.

We have now described the four perspectives for this business model: the con-
text; situational factors; concerns; and predominant practices. In the next section, we
present, as described by Iberle (2003) [IBE 03], only the context and concerns regard-
ing the other four business models.

1.6.6.2 Custom Systems Written In-House

When using one’s own employees to develop software, economic aspects are differ-
ent than for those who have their software developed on a contract basis. The value of
the work depends on improving efficacy or efficiency of operations within the orga-
nization. Less focus is put on scheduling meetings since projects are often pending or

1.6 Business Models and the Choice of Software Engineering Practices 31

postponed depending on the budget. The systems can be critical for the organization
or of an experimental nature. Fixes are distributed to a limited number of sites.

Developers of these systems often are concerned with the following:

– producing incorrect results;

– limiting the ability of other employees to do their own work;

– their project being cancelled.

1.6.6.3 Commercial Software

Commercial software is software sold to other organizations rather than to an individ-
ual consumer. Profits depend on the familiar economic model, which involves selling
many copies of the same piece of software for more than the cost of developing and
making the copies. Instead of meeting the specific needs of a single client, the devel-
oper aims to satisfy many clients. The software is often critical for the organization or
at least very important for the client’s organizational operations. Since the software
is in the hands of many clients in many places, the distribution of corrections can be
very costly. These clients also tend to instigate legal proceedings if the software is
deficient, which increases the cost of errors.

Business system vendors are generally fearful of:

– court cases;

– recalls;

– tarnishing their reputation.

1.6.6.4 Mass-Market Software

This software is sold to individual consumers often at a very high volume. Profits are
made by selling products at higher than development cost, often in a niche market or
at certain times of the year, such as at Christmas. The potential effects of software
failures for the client are generally less serious than those in the previous models and
clients are less likely to demand reparation for any damage incurred. The failure of
certain software may considerably affect the user’s well-being, such as in the case of
tax preparation software. However, for most, a failure is simply a source of frustration.

The typical concerns in this culture are:

– missing the marketing opportunity;

– a high level of support calls;

– bad reviews in the press.

The cost of fixing errors, for mass-market product manufacturers, could be sig-
nificantly reduced when the owner can update their products. Unfortunately, the cus-
tomer will be left to search for and perform these upgrades.

32 Chapter 1 Software Quality Fundamentals

1.6.6.5 Commercial and Mass-Market Firmware

Given that profits depend on the sale of the product for more than the manufacturing
cost, the cost of distributing fixes is extremely high, since electronic circuits must
often be changed on site. Corrections cannot simply be sent to the client. The impact
of down time with mass-market embedded software is potentially more serious than
the impact of software failures, since the software is controlling a device. Although
the destructive potential of small objects, such as digital watches, is low, in certain
cases, software failures could have fatal consequences.

The typical concerns of this culture are:

– incorrect behavior of the software in certain situations;

– recalls;

– court cases.

Business Model—Open-Source Software

Open-source software is software that is distributed with its source code and the autho-
rization to modify and distribute it freely under the condition that it is also provided as
open-source software once modified.

This business model is becoming an influential economic model in the software
industry. It permits its users to collaborate, essentially over the Internet, by adding
improvements to a software and distributing it once modified. This approach allows oth-
ers to benefit from these innovations. However, open-source software does not permit its
developers to be paid for these improvements.

The concerns associated with this model are:

– undemonstrated quality;

– lack of support;

– delays in providing fixes.

Adapted from Wikipedia

1.7 SUCCESS FACTORS

Implementing practices to improve software quality can be facilitated or slowed down
based on factors inherent to the organization. The following text boxes list some of
these factors.

1.8 Further Reading 33

Factors that Foster Software Quality

1) SQA techniques adapted to the environment.

2) Clear terminology with regards to software problems.

3) An understanding and specific attention to each major category of software error
sources.

4) An awareness of the SQA body of knowledge of the SWEBOK as a guide for SQA.

Factors that may Adversely Affect Software Quality

1) A lack of cohesion between SQA techniques and environmental factors in your orga-
nization.

2) Confusing terminology used to describe software problems.

3) A lack of understanding or interest for collecting information on software error
sources.

4) Poor understanding of software quality fundamentals.

5) Ignorance or non-adherence with published SQA techniques.

1.8 FURTHER READING

Arthur L. J. Improving Software Quality: An Insider’s Guide to TQM. John Wiley & Sons,
New York, 1992, 320 p.

Crosby P. B. Quality Is Free. McGraw-Hill, New York, 1979, 309 p.
Deming W. E. Out of the Crisis. MIT Press, Cambridge, MA, 2000, 524 p.
Humphrey W. S. Managing the Software Process. Addison-Wesley, Reading, MA, 1989,

Chapters 8, 10, and 16.
Juran J. M. Juran on Leadership for Quality. The Free Press, New York, 1989.
Suryn W., Abran A., and April A. ISO/IEC SQuaRE. The Second Generation of Standards

for Software Product Quality. In: Proceedings of the 7th IASTED international conference
on Software Engineering and Applications (ICSEA’03), Montreal, Canada, 2003, pp. 1–9.

Vincenti W. G. What Engineers Know and How They Know It—Analytical Studies from
Aeronautical History. John Hopkins University Press, Baltimore, MD, 1993, 336 p.

34 Chapter 1 Software Quality Fundamentals

1.9 EXERCISES

1.1 Describe the difference between a defect, an error, and a failure.

1.2 According to the studies of Boris Beizer, when do the greatest number of software errors
occur in the software development life cycle?

1.3 Describe the difference between the software and hardware reliability curves.

1.4 Eight categories for causes of errors describe the development and maintenance environ-
ment, as experienced in organizations:

a) Identify and describe these situations.

b) What situations more specifically influence software engineers who develop and
maintain the software?

c) What situations more specifically influence the effort of the software engineering
managers who develop and maintain the software?

1.5 Describe the different perspectives of software quality from the point of view of the
client, the user, and the software engineer.

1.6 Describe the types of needs, their origin, and the causes for differences that may be due
to a discrepancy between the needs expressed by the client and those carried out by the
software engineer.

1.7 Describe the concept of business models and how it creates different perspectives for
SQA requirements.

1.8 Describe the main differences between QA and quality control.

Chapter 2

Quality Culture

After completing this chapter, you will be able to:

– understand the cost of quality;

– recognize the signs of a quality culture;

– identify the compromises of the five dimensions of a software project;

– know and follow the software engineer’s code of ethics.

2.1 INTRODUCTION

In this chapter, we consider the concepts of the cost of quality, quality culture, and the
code of ethics for software engineers. The issues related to quality will be applied to
the context of software development. The principles set out in this book apply to those
who develop, maintain, and work on information technology infrastructure, be it com-
puter technicians, management computer specialists, or software and IT engineers.
Typically, software engineers graduate from a school of engineering and are mem-
bers of a professional order. We know that the term “software engineer” is currently
used freely in both universities and the business world. Very few software engineers
have obtained certified university degrees. For the engineer who is a member of a
professional association, quality is part of the civil liabilities for the profession and
must be managed prudently.

Non-quality in software has led to several catastrophes. In this chapter, we
present examples where poor quality culture and the lack of a code of ethics have
led to disastrous situations involving poor quality software and irreversible damage
to people and the environment.

The following description is of the case of a Canadian medical device for treat-
ing cancer (Therac-25), which caused the death of several patients from massive

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

35

36 Chapter 2 Quality Culture

irradiation. Similar incidents have occurred with devices developed by other com-
panies throughout the world. We describe the Therac-25 case because it has been
extensively studied and documented.

A large Japanese electronic product manufacturing company uses a considerable number
of suppliers. The supplier pyramid is made up of a first level with some sixty suppliers,
a second level with a few hundred suppliers, and a third level with a few thousand very
small suppliers.

Prime (60)

Suppliers (600)

Producers (~6,000)

Manufacturer

A software defect for a component produced by a third-level supplier caused a loss of
over $200 million for this manufacturer.

Adapted from Shintani (2006) [SHI 06]

We believe that setting up a quality culture and software quality assurance (SQA)
principles, as stipulated in the standards, could help solve these problems.

It is clear that quality, which is influenced by your organization’s senior manage-
ment and the organization’s culture, has a cost, has a positive effect on profits, and
must be governed by a code of ethics.

“In today’s software market, the main focus is on costs, schedule and functions, and qual-
ity is lost in the noise. This is regrettable since mediocre quality performance is at the heart
of most software costs and scheduling problems.”

Watts S. Humphrey

2.1 Introduction 37

In the software industry, there are still too many quality problems that are becom-
ing increasingly severe and with more consequences (consult the Incidents and Horror
Stories Involving Software in the appendix at the end of this book). In the following
text box, we describe the case of a defective medical device, the Therac-25, which
injured and killed patients. Its software had many defects.

The Therac-25 Medical Device

Computers are increasingly being introduced into safety-critical systems and, as a conse-
quence, have been involved in accidents. Some of the most widely cited software-related
accidents in safety-critical systems involved a computerized radiation therapy machine
called the Therac-25. Between June 1985 and January 1987, six known accidents involved
massive overdoses, by the Therac-25, resulting in deaths and serious injuries.

In 1982, the Therac-25 replaced older models of the Therac-6 and Therac-20 radi-
ation therapy machines at Atomic Energy Canada Limited (AECL). The new model was
computer/software controlled, whereas the older models were controlled by electrome-
chanical components. In the new model, the software was supposed to immediately stop
the machine/treatment in the event of a malfunction. This is very complex and expensive
equipment, costing around $1 million. Some software of Therac-25 had been recently
created, whereas other parts had been reused from the previous models. However, reused
software from older models was not essential to the safety of the treatment since it was
the electrotechnical components that ensured the additional safeguard.

During the incidents, the patients complained of severe burns, and radiation over-
dose was not initially identified as a possible cause of these accidents. In one case, the
patient complained of having a burning sensation. The technician told the patient that
there was nothing indicating that a problem had occurred during the treatment. This
same patient had to have a mastectomy and subsequently lost the use of one arm and her
shoulder.

Another incident occurred in Ontario. During the treatment, the machine shut down
after a few seconds and indicated that no dose was delivered to the patient. The operator
then pressed the Proceed command key. The machine shut down again. The operator
repeated the process a few times and the machine displayed “no dose” delivered. The
patient complained of a burning sensation. The patient died a few months later of an
extremely virulent cancer. An AECL technician later estimated the patient had received
between 13,000 and 17,000 rads. Typical single therapeutic doses are in the 200-rad range.
Doses of 1000 rads can be fatal if delivered to the whole body.

Later that year, another patient was burned while the unit indicated it was in pause
mode. This patient died of his injury 5 months later. Failing to reproduce the problem,
AECL concluded that the patient was probably burned by an electrical shock unrelated
to the radiation treatment. An independent company was asked to check the device and
found no electrical problems.

38 Chapter 2 Quality Culture

After this incident, the US Food and Drug Administration reported to AECL that
this device did not operate in accordance with the law and required AECL to inform all
of its users about these problems and possible consequences to the patients. Users of
the Therac-25 formed a user group and questioned AECL about the lack of transparency
concerning these accidents. Sometime later that year, the newspapers started publishing
stories about two of the accidents that had occurred.

It seemed that AECL did not consider that the software could have been the cause
of these incidents since AECL had reused software that worked well in previous mod-
els. It was thought that by reusing software that was functioning and verified, this would
automatically ensure its reliability. They had forgotten that certain parameters of the new
model were different than the older models. Electromechanical devices in the older mod-
els were overriding software defects and preventing equipment malfunctions. With the
Therac-25 model, the company had, for cost reasons, removed the electromechanical
devices and thus exposed the faulty software instructions and harmed patients by inad-
vertently removing the additional safety feature.

Basic software-engineering principles that apparently were violated with the Therac-
25 include:

– documentation should not be an afterthought;

– software quality assurance practices and standards should be established;

– designs should be kept simple;

– ways to get information about errors, for example, software audit trails, should be
designed into the software from the beginning;

– the software should be subjected to extensive testing and formal analysis at the module
and software level; system testing alone is not adequate.

Furthermore, these problems are not limited to the medical industry. It is still a com-
mon belief that any good engineer can build software, regardless of whether he or she
is trained in state-of-the-art software-engineering procedures. Many companies building
safety-critical software are not using proper procedures from a software engineering and
safety-engineering perspective.

Most accidents are system accidents; that is, they stem from complex interactions
between various components and activities. To attribute a single cause to an accident is
usually a serious mistake. In this article, we hope to demonstrate the complex nature of
accidents and the need to investigate all aspects of system development and operation to
understand what has happened and to prevent future accidents.

The Therac-25 accidents are the most serious computer-related accidents to date (at
least non-military and admitted) and have even drawn the attention of the popular press.

Adapted from Leveson and Turner (1993) [LEV 93]

Readers are invited to read the 24-page article, available on the internet, written
by Leveson and Turner (1993) [LEV 93], describing the six accidents involving mas-
sive overdoses to patients in more detail as well as a description of the investigations
conducted to discover the multiple causes of the Therac-25 accidents.

2.2 Cost of Quality 39

2.2 COST OF QUALITY

One of the major factors that explains the resistance to implementing quality assur-
ance is the perception of its high cost. In organizations that develop software, it is
rare to find data on the cost of non-quality.

In this part of the book, we define the components of the cost of quality. Next, we
discuss the cost of quality used in a major American company working in the military
industry, and the data collected by Professor Claude Y. Laporte while working with
different organizations. Lastly, we present a case study using data collected from a
major transportation equipment manufacturer in Canada, Bombardier Transport.

“We never have time to do work correctly the first time, but we always manage to find the
time to redo the work one or two times.”

Anonymous

Thinking in terms of costs helps attract the attention of administrators. This
approach means better positioning of the software quality file and confronting the
sometimes negative perceptions of company administrators, project managers, and
often engineers from other disciplines (e.g., mechanical engineer). This approach is
preferred to a technological discussion since the terminology of costs is common to
almost all administrators, and a constant concern for management. Thus, SQA must
strive to present the software quality improvement file in a way that is homogenous
and consistent with the company’s other investments, that is, as a business case for
the organization. It is also a professional way to present an investment file.

As software engineers, you are responsible for informing administrators of the
risks that a company takes when not fully committed to the quality of its software. A
practical manner of beginning the exercise is to identify the costs of non-quality. It is
easier to identify potential savings by studying the problems caused by software.

To convince administrators of the necessity of quality software, they must be shown
the impacts of not having quality software. This can be done by collecting data on the
experiences of a company that invested in quality programs versus one that did not.
They must be presented with the positive results and benefits obtained from all aspects
of applying quality, as well as the negative effects and failures due to a lack of quality or
a concern for quality.

40 Chapter 2 Quality Culture

The costs of a project can be grouped into four categories: (1) implementation
costs, (2) prevention costs, (3) appraisal costs, and (4) the costs associated with fail-
ures or anomalies.

If we are certain that all development activities are error free, then 100% of costs
could be implementation costs. Given that we make mistakes, we need to be able to
identify them. The costs of detecting errors are appraisal costs (e.g., testing).

Costs due to errors are anomaly costs. When we want to reduce the cost of anoma-
lies, we invest in training, tools, and methodology. These are prevention costs.

“Quality is not only an important concept, it is also free. And it is not only free, it is the
most profitable product that we produce! The real question is not how much a quality
management system costs, but what is the cost of not having one.”

Harold Geneen
CEO ITT Corporation

The “cost of quality” is not calculated in the same way in all organizations. There
is a certain amount of ambiguity between the notion of the cost of quality, the cost of
non-quality, and the cost of obtaining quality. In fact, this is a non-issue, regardless of
what it is called, it is important to clearly identify the different costs taken into account
in our calculations. To do so, we can see how other companies have dealt with this.

In the most commonly used model at this time, costs of quality take into account
the following five perspectives: (1) prevention costs, (2) appraisal costs, (3–4) failure
costs (internal during development, external on the client’s premises), and (5) costs
associated with warranty claims and loss of reputation caused by non-quality.

The only difficulty with this model is clearly identifying the activities associated
with each perspective and then tracking the actual costs for the company. We must
not underestimate the complexity of this second step! The calculation of the cost of
quality in this model is as follows:

Quality costs = Prevention costs
+ Appraisal or evaluation costs
+ Internal and external failure costs
+ Warranty claims and loss of reputation costs

– Prevention costs: This is defined as the cost incurred by an organization to
prevent the occurrence of errors in the various steps of the development or
maintenance process. For example, the cost of training employees, the cost of
maintenance to ensure a stable manufacturing process, and the cost of making
improvements.

2.2 Cost of Quality 41

– Appraisal costs: The cost of verifying or evaluating a product or service during
the different steps in the development process. Monitoring system costs (their
maintenance and management costs).

– Internal failure costs: The cost resulting from anomalies before the product or
service has been delivered to the client. Loss of earnings due to non-compliance
(cost of making changes, waste, additional human activities, and the use of
extra products).

– External failure costs: The cost incurred by the company when the client dis-
covers defects. Cost of late deliveries, cost of managing disputes with the client,
logistical costs for storing the replacement product or for delivery of the prod-
uct to the client.

– Warranty claims and loss of reputation costs: Cost of warranty execution and
damage caused to a corporate image as well as the cost of losing clients.

In the late 1990s, a hospital in the Montreal region developed a clinical research manage-
ment platform. Before a manager who was specialized in medicine and was an advocate
of software quality joined the hospital, between 40% and 50% of defects were identified
by the doctor-users of the software for each version. After the manager set up software
quality processes, defects dropped by 20% within 1 year. The development team was
delighted with the results, and especially with the idea of not having to rework half the
functions with each version. However, management found these processes to be too long
and decided to lay off the manager. After his departure, the process was abolished, and
several of the best employees left the hospital because they were demotivated when old
habits set in again.

In addition to the costs listed above, an organization may suffer other repercus-
sions following the development of a defective software such as lawsuits, penalties
imposed by the court, a deterioration of the market value of their shares, the with-
drawal of financial partners, and the departure of key employees.

Krasner [KRA 98] published a table to better understand the activities and costs
for three quality perspectives (see Table 2.1).

Cost of quality models started appearing in the 1950s based on the work of
Feigenbaum and colleagues. They proposed a method for classifying the costs
associated with the quality assurance carried out on a product. They proposed an
economic point of view and empirically studied the relationship of each perspective
on total cost.

42 Chapter 2 Quality Culture

Table 2.1 Categories of Software Quality Costs

Major
categories Subcategories Definition Typical costs

Prevention
cost

Quality basis
definition

Effort to define
quality, and to
set quality goals,
standards, and
thresholds.
Quality trade-off
analysis

Definition of release
criteria for acceptance
testing and related
quality standards

Project and
process-
oriented
interventions

Effort to prevent
poor product
quality or
improve process
quality

Process improvement,
updating of procedures
and work instructions;
metric collection and
analysis; internal and
external quality audits;
training and certification
of employees

Appraisal or
evaluation
cost

Discovery of the
condition of
the product

Discovery of the
level of non-
conformance

Test, walk-through,
inspection, desk-check,
quality assurance

Ensuring the
achievement of
quality

Quality control
gating

Contract/proposal review,
product quality audits,
“go” or “no go”
decisions to release or
proceed, quality
assurance of
subcontractor

Cost of
anomalies
or non-
conformance

Internal
anomalies or
non-
conformance

Problem detected
before delivery
to the customer

Rework (e.g., recode,
retest, re-review,
re-document, etc.)

External
anomalies or
non-
conformance

Problem detected
after delivery to
the customer

Warranty support,
resolution of complaints,
reimbursement damage
paid to customer,
domino effect (e.g., other
projects are delayed),
reduction of sales,
damage to reputation of
enterprise, increased
marketing

Source: Adapted from Krasner 1998 [KRA 98].

2.2 Cost of Quality 43

Low

Total
cost of

software
quality

Total costs
of failure

Total costs
of control

Quality
costs

Optimal
software
quality
level

High

Software quality level

Figure 2.1 Balance between the software quality level and the cost of quality [GAL 17].

As illustrated in Figure 2.1, increased detection and prevention costs lead to
reduced costs related to failures (internal or external) and vice versa: a drop in the
costs of detection and prevention leads to an increase in the costs related to failures.
As well, there is a relationship between the level of software quality and the total cost
of detection and prevention. The discussion in the previous section on the different
business fields enables us to see that software with high criticality will need a higher
quality level than software with lower criticality, which will mean increased detection
and prevention costs.

Acme Communications Inc. received a new project. The project involved automating a
survey system for a company that provides consulting services to contractors. The com-
pany already had experience in developing survey software.

After meeting with the client, the project manager analyzed the information and
prepared a two-page document that specified his understanding of the requirements. The
estimate was 40 hours of work for the first delivery. The project was considered to be
so simple that it was assigned to an intern. The project manager, without having con-
sulted with the previous developers, asked an intern to use the source code of an existing
application that he believed to be similar. Thirty hours after the development began, the

44 Chapter 2 Quality Culture

intern had not yet understood the source code. The manager had already promised the first
delivery within the time estimated, so there remained only 10 hours and the entire week-
end for the version to be ready for the following Monday. The manager felt it necessary
to ask a former developer to do the work.

The developer’s analysis showed that this application was new and that there was
no similar one existing in the company. In other words, the project had to be started from
scratch. The manager, anxious after hearing this information, asked the developer whether
he could work the entire weekend to deliver something to the client. The developer saw
this as a tremendous opportunity and asked for a 25% salary raise.

The first version was delivered, but with only 70% of the features required. The final
version was completed after requiring an extra 20-hour workload. The project initially
estimated at 40 hours instead took a total of 84 hours.

The first objective of the SQA is to convince management that there are proven
benefits to SQA activities. To do this, he must be convinced of this himself. We all
have been taught the following: “identifying an error early in the process can save a
lot of time, money and effort.”

C
os

t t
o

co
rr

ec
t

a
de

fe
ct

Requirements Construction Integration Acceptance In
and design tests tests operation

$139
$455

$977

$7,136

$14,402

Figure 2.2 Costs of propagating an error1 [JON 00].

After years spent studying and measuring software practices, Capers Jones
[JON 00] estimated the average costs of fixing defects in the software industry (see
Figure 2.2). The simulations show that it is profitable to identify and fix a defect as
soon as possible. A defect that arises during the assembly phase will cost three times
more to fix than one that is corrected during the previous phase (during which we
should had been able to find it). It will cost seven times more to fix the defect in the

1These costs are based on the value of the American dollar in 1981.

2.2 Cost of Quality 45

50.0%

45.0%

40.0%

35.0%

30.0%

25.0%

20.0%

15.0%

10.0%

5.0%

0.0%

49.1%

0.0% 2.3%

9.0%
12.1% 11.7%

2.5%
1.9%

10.6%

0.7% 0.1% 0.0%

Pro
po

sa
l

Exte
rn

al
re

q.
 so

ur
ce

Req
uir

em
en

ts

Pre
lim

ina
ry

 d
es

ign

Det
ail

ed
 d

es
ign

Cod
e

Unit
 te

st

SW
 ve

rif
ica

tio
n

Sup
po

rt
to

 I
& T

M
ain

te
na

nc
e

Ope
ra

tio
ns

SW
 in

te
gr

at
ion

 te
st

Software defect injection phase

System development phase

D
ef

ec
ts

 (
%

)

Figure 2.3 Defect injection distribution during the life cycle [SEL 07].

next phase (test and integration), 50 times more in the trial phase, 130 times more in
the integration phase, and 100 times more when it is a failure for the client, and has
to be repaired during the operational phase of the product.

In fact, Boehm [BOE 01] also published that it would only cost $25, in 2001, to
correct a problem identified in a requirements and specifications document. This cost
increases to $139 if the problem is discovered during programming. The origin of
software defects ended up being the subject of many studies. For example, Figure 2.3
presents the origin of the defects throughout the development life cycle of software
in a case study published by Selby and Selby (2007) [SEL 07].

In this case study, we see that approximately 50% of defects occurred during
the requirements phase. If these defects are not corrected early on, they will be very
expensive to fix during the test and operational phases. As well, it is quite possible
that correcting these defects will involve extending the delivery schedule, since all
too often the effort involved in correcting the defects was not factored into the initial
plan. If, however, the software must be delivered by a set date, it is quite possible
that a large number of defects will not be corrected in order to meet the delivery
date. Therefore, the client will have to use software containing a large number of
defects while awaiting a new version.

In the defense industry, the American company Raytheon carried out a study on
the cost of quality [DIO 92, HAL 96]. This study measured the cost of quality over a

46 Chapter 2 Quality Culture

0

10

20

30

40

50

60

70

P
er

ce
n

ta
g

e
o

f
to

ta
l p

ro
je

ct
 c

o
st

Year

CMM level 3
Start of intiative

CMM level 1

TCoSQ

Prevention
Rework

Appraisal

Cost of
conformance

Rework

87 88 89 90 91 92 93 94 95 96

Figure 2.4 Data on software quality costs [HAL 96].

9-year period. Figure 2.4 shows that, at the beginning of the study, the rework cost for
this company was evaluated at approximately 41% of the total cost of the projects, at
18% when process maturity had been improved and 11% when the process maturity
was at level 3, and then 6% when it was at level 4 maturity. The figure also describes
that with prevention costs of less than 10% of the total cost of the projects, the rework
costs were reduced from 45% to less than 10% of the total cost of the projects.

The study by Dion concluded that the cost of quality seems to be correlated with
the implementation of increasingly mature processes. Another study on quality costs
published by Krasner proposes that the rework costs vary between 15% and 25% of
the development costs for a level 3 maturity organization (see Table 2.2).

The Case of Bombardier Transport

A project to measure software quality costs was carried out within the software develop-
ment group at Bombardier Transport located in Quebec. A team, composed of 15 spe-
cialized software engineers in this group, was commissioned to develop control software

2.2 Cost of Quality 47

for the subway system in a large American city. They decided to set up data collection to
measure the quality costs for this project. The measuring activity took place in four steps:
drawing up a list of typical activities related to software quality costs; categorizing these
activities (prevention, evaluation, and correcting anomalies); developing and applying
weighting rules; and finally, measuring software quality costs. In all, 27 weighting rules
were developed, and one weighting rule was assigned to each project task. More than
1121 software activities were analyzed for a project amounting to 88,000 hours of work.
The results obtained showed that, for this project, the software quality cost represented
33% of the total project cost. The rework, or anomaly costs were 10%, prevention costs
were 2% and evaluation costs were 21% of the total development costs. The following
figure illustrates these results.

Rework
10%

Prevention
2%

Implementation
67%

Evaluation
21%

Budget breakdown for a software project at Bombardier Transport [LAP 12].

Table 2.2 Relationship Between the Process Maturity Characteristic
and Rework [KRA 98]

Process maturity
Rework (percent of total
development effort)

Immature ≥50%
Project controlled 25% – 50%
Defined organizational process 15% – 25%
Management by fact 5% – 15%
Continuous learning and improvement ≤5%

T
he

C
os

to
f

Q
ua

lit
y

O
ve

r
m

an
y

ye
ar

s,
Pr

of
es

so
r

L
ap

or
te

co
lle

ct
ed

da
ta

on
th

e
co

st
s

of
qu

al
ity

.
E

ng
in

ee
rs

an
d

m
an

ag
er

s
of

m
ul

tin
at

io
na

l
or

ga
ni

za
tio

ns
an

d
M

as
te

r
of

so
ft

w
ar

e
en

gi
ne

er
in

g
st

ud
en

ts
w

or
ki

ng
fo

r
or

ga
ni

za
tio

ns
in

th
e

M
on

tr
ea

la
re

a
pr

ov
id

ed
th

es
e

da
ta

.T
he

fo
llo

w
in

g
ta

bl
e

sh
ow

s
th

at
th

e
av

er
ag

e
re

w
or

k
co

st
is

ap
pr

ox
im

at
el

y
30

%
.

Si
te

 A
A

m
er

ic
an

en
gi

ne
er

s
(1

9)

Si
te

 A
A

m
er

ic
an

m
an

ag
er

s
(5

)

Si
te

 B
E

ur
op

ea
n

en
gi

ne
er

s
(1

3)

Si
te

 C
E

ur
op

ea
n

en
gi

ne
er

s
(1

4)

Si
te

 D
E

ur
op

ea
n

en
gi

ne
er

s
(9

)

C
ou

rs
e

A
20

08
(8

)

C
ou

rs
e

E
20

11
(1

5)

C
ou

rs
e

F
20

12
(1

0)

C
ou

rs
e

G
20

13
(1

4)

C
ou

rs
e

H
20

14
(1

1)

C
ou

rs
e

I
20

15
(1

3)

C
ou

rs
e

J
20

16
(1

4)

P
er

fo
rm

an
ce

co
st

s
41
%

44
%

34
%

31
%

34
%

29
%

43
%

45
%

45
%

34
%

40
%

44
%

36
%

37
%

40
%

R
ew

or
k

co
st

s
30
%

26
%

23
%

41
%

34
%

28
%

29
%

30
%

25
%

32
%

31
%

25
%

29
%

27
%

27
%

A
pp

ai
sa

l
co

st
s

18
%

14
%

32
%

21
%

26
%

24
%

18
%

14
%

20
%

27
%

20
%

19
%

20
%

22
%

20
%

P
re

ve
nt

io
n

co
st

s
11
%

16
%

11
%

8%
7%

14
%

10
%

11
%

10
%

8%
9%

12
%

15
%

14
%

13
%

Q
ua

lit
y

*
71

8
23

35
17

43
19

48
35

60
55

72
44

23

C
ou

rs
e

B
20

08
(1

4)

C
ou

rs
e

C
20

09
(1

1)

C
ou

rs
e

C
20

10
(8

)

∗
N

um
be

r
of

de
fe

ct
s

pe
r

10
00

lin
es

of
so

ur
ce

co
de

.

A
da

pt
ed

fr
om

L
ap

or
te

et
al

.(
20

14
)

[L
A

P
14

]

2.3 Quality Culture 49

We hope that this section, which discussed the concepts of the cost of quality,
has convinced you of the importance of implementing improvements in software pro-
cesses and quality assurance so as to better understand the cost categories to include
in your estimates. It is indeed possible to produce quality software while minimizing
rework costs (since rework costs are, if the organization has made the right choices,
either losses or profits). The use of the cost of quality concept could affect the level of
a company’s competitiveness. We have shown that a company that invests in defect
prevention can offer a product at a lower cost, with less risk of failures and can grad-
ually make strides ahead of their competitors.

Defect prevention is an activity that has not always been popular with software
developers. This activity is wrongly perceived as a waste of time and energy. The
following section presents a model that evaluates the efficacy of the defect elimination
activity and its associated costs. The objective is to convince you that adding a quality
activity is worthwhile, and once you are convinced, you will then be able to convince
your bosses.

2.3 QUALITY CULTURE

Tylor [TYL 10] defined human culture as “that complex whole which includes knowl-
edge, belief, art, morals, law, custom, and any other capabilities and habits acquired
by man as a member of society.” It is culture that guides the behaviors, activities,
priorities, and decisions of an individual as well as of an organization.

Wiegers (1996) [WIE 96], in his book “Creating a Software Engineering Cul-
ture,” illustrates the interaction between the software engineering culture of an orga-
nization, its software engineers, and its projects (see Figure 2.5).

According to Wiegers, a healthy culture is made up of the following elements:

– The personal commitment of each developer to create quality products by sys-
tematically applying effective software engineering practices.

Software engineering culture

Management
priorities

Technical
practices

Everyone’s
actions

Project
goals

Imply

Reinforce

Reinforce

ReinforceDefines

Is foundation for
Helps set

Figure 2.5 Software engineering culture.
Source: Adapted from Wiegers 1996 [WIE 96].

50 Chapter 2 Quality Culture

– The commitment to the organization by managers at all levels to provide an
environment in which software quality is a fundamental factor of success and
allows each developer to carry out this goal.

– The commitment of all team members to constantly improve the processes they
use and to always work on improving the products they create.

“The challenge of designing the Boeing 777 was 20% technical and 80% cultural.”
John Warner

President (retired), Boeing Computer Systems

As software engineers, why should we be concerned with this aspect? First of
all, quality culture cannot be bought. The organization’s founders must develop it
from the creation of the company. Then, when employees are selected and hired, the
founders’ corporate culture will slowly begin to change, as illustrated in Figure 2.5.
Quality culture cannot be an afterthought; it must be firmly integrated from the outset,
and constantly consolidated. The objective of management is to instill a culture that
will promote the development of high quality software products and offer them at
competitive prices in order to produce income and dividends within an organization
where employees are engaged and happy.

The second reason why a software engineer should be interested in the cultural
aspects of quality is that effecting change within an organization does not boil down
to placing an order with employees. The organization must work to change its culture
with the help of change agents. We now know that one of the main stumbling blocks
to change within an organization is the organization’s culture.

Employees must feel involved and be able to see the benefits of any change.
For example, if the change provides no benefit to a worker and has only been made
to satisfy a manager’s whim, the worker will not be interested in this change. The
actions of the employee in our example will not foster the reinforcement of corporate
culture and its degree of maturity will not be affected. It is imperative that cultural
change is managed in order to obtain the desired results [LAP 98].

You may be asked to “cut corners” regarding the quality of your work or the
way in which things are done (comic strip in Figure 2.6). Managers and clients may
increase pressure and ask you to skip steps. In the most desperate situations, you may
be asked to start programming even before having identified the needs. This old way
of thinking about IT still prevails in some companies.

It is not always easy to resist pressure from people who are paying the bills or
your salary. In certain cases, you will feel that you have no choice: do what you are
being asked to do or leave (see the comic strips in Figures 2.7 and 2.8).

It may be difficult to imagine spending your career in this type of environment.
When a quality culture is well established, employees will get involved even in times

2.3 Quality Culture 51

Figure 2.6 Start coding . . . I’ll go and see what the client wants!
Source: Reproduced with permission of CartoonStock ltd.

Figure 2.7 Dilbert is threatened and must provide an estimate on the fly. DILBERT © 2007 Scott
Adams. Used By permission of UNIVERSAL UCLICK. All rights reserved.

of crisis. It is for this reason that software developers and managers must adopt princi-
ples that motivate them to stick to their processes even during these difficult periods.
Of course, we are always more flexible during a crisis, but not to the point of dropping
all quality assurance activities and our good judgment.

In difficult situations, you must never let your boss, a colleague, or your client
convince you do to bad work; proceed with integrity and intelligence with your boss
and clients.

The client is not always right. Yes, you heard right! However, he probably has
a valid point of view and you have a duty to listen to the client’s concerns. Having
said that, you are the person solely responsible for interpreting his needs and con-
verting them into specifications and reasonable estimates of effort and duration. The

52 Chapter 2 Quality Culture

Figure 2.8 Dilbert tries to negotiate a change in his project. DILBERT © 2009 Scott Adams. Used
By permission of UNIVERSAL UCLICK. All rights reserved.

highest added value of a business analyst in a project is to mitigate expectations and
find a solution that will meet requirements and is realistic, feasible, and practical. Be
aware of overly aggressive salespersons. One of my friends used to say “Nothing is
impossible for those who do not have to do it.”

Be honest with your clients and make sure that you clearly communicate the
limitations and scope of the work that will be done. Wiegers lists fourteen principles
to follow to develop a culture that fosters quality (see Table 2.3).

The culture of an organization is a defining factor of successful efforts to
improve processes. “Culture” includes a set of shared values and principles that guide

Table 2.3 Cultural Principles in Software Engineering [WIE 96, p. 17]

1. Never let your boss or client cause you to do poor work.

2. People must feel that their work is appreciated.

3. Continuing education is the responsibility of each team member.

4. Participation of the client is the most critical factor of software quality.

5. Your greatest challenge is to share the vision of the final product with the client.

6. Continuous improvement in your software development process is possible and essential.

7. Software development procedures can help establish a common culture of best practices.

8. Quality is the number one priority; long-term productivity is a natural consequence of
quality.

9. Ensure that it is a peer, not a client, who finds the defect.

10. A key to software quality is to repeatedly go through all development steps except
coding; coding should only be done once.

11. Controlling error reports and change requests is essential to quality and maintenance.

12. If you measure what you do, you can learn to do it better.

13. Do what seems reasonable; do not base yourself on dogma.

14. You cannot change everything at the same time. Identify changes that will reap the most
benefits, and start to apply them as of next Monday.

2.4 The Five Dimensions of a Software Project 53

behaviors, activities, priorities, and decisions of a group of people working in the
same field. When colleagues share beliefs, it is easier to bring about changes to
increase group efficiency as well as the chances of survival.

A development team was set up. A few of the team members were experts in the field,
while others were new. The development tools and processes that guided the project were
new and therefore not yet mature. The project manager emphasized team unity to create
a learning environment. This allowed the team to practice these new processes. Mistakes
were allowed, and thus improvement was continuous. The manager’s style combined
humor and enthusiasm, which also fostered team spirit. Team activities were carried out
to promote individual success as well as the teams’ success. The manager also set up a
culture of expertise, which meant that each team member had his or her area of expertise
and focused all efforts on improving this expertise.

Quality involves an important social aspect in which the level of involvement and
collaboration of each member in the company becomes essential. It is imperative to
promote, and continuously support, beliefs and practices in terms of quality in order
to preserve and enrich this critical aspect of corporate culture.

It is important to understand the context in which the organization is developing
software in order to be able to understand why it is using a specific practice and not
another [IBE 03]. Indeed, a company that develops and distributes software in a highly
regulated sector is quite different from a company that develops its own applications
for in-house operations. Moreover, other factors within these organizations may also
be influencing practices, such as risk and project scope, mastering business rules, and
laws for the sector. By analyzing the situation, the software engineer can better evalu-
ate the changes that should be made to promote the development of a quality culture.

Quality culture must, above all, be expressed by the willingness to cultivate
it emanating from the company’s upper management and not only from the engi-
neering team who, in a way, plays the role of quality police. In the most extreme
cases where accidents occurred, corporate management very often seemed involved
in choosing non-quality in order to maximize shareholder profits without having a
long-term vision. The next section will provide tools for managing these situations.

2.4 THE FIVE DIMENSIONS OF A
SOFTWARE PROJECT

Wiegers developed an approach at Eastman Kodak in New York, in order to better
frame project start-up discussions. He believed there are five dimensions that must
be managed as part of a software project (see Figure 2.10). These dimensions are not

54 Chapter 2 Quality Culture

independent. For example, if you add staff members to the project team, this may (but
not always) shorten the deadline; however, this will increase costs. A common com-
promise is to shorten the deadlines by reducing features or reducing quality. Com-
promises that need to be made among these five dimensions are not easily made, but
can be illustrated so as to have more realistic discussions and better document these
decisions. For each project, you must have an idea of which dimensions have more
constraints, and which are able to offset these constraints.

Three roles can be associated with each dimension: (1) a driver, (2) a constraint,
and (3) a degree of freedom.

A driver is the specific and major reason for which the project must be carried out.
For a product that has competition in the market and must offer new features that are
expected by clients, the deadline is the main driver. For a project to update software,
the driver could be a specific feature. Defining the project driver and associating it
with one of the five dimensions allows us to focus on the status of each dimension.

A constraint is an external factor that is not under the control of the project man-
ager. If you have a set number of resources, the “staff” dimension will be a constraint.
Often cost will be a constraint for a project under contract. Quality is also a software
constraint for medical devices or helicopters, for example.

Certain dimensions, such as features, may have roles as both drivers and con-
straints when a feature is non-negotiable. Any dimension that is not a driver or a
constraint provides a certain degree of freedom. These dimensions can be adjusted
to contribute to achieving an objective under a given constraint. The five dimensions
cannot simultaneously be either all drivers or all constraints. Therefore, the priority of
each dimension must be negotiated with the client right from the start of the project.

Here are two examples of how to use this negotiation model proposed by
Wiegers. A Kiviat diagram with five dimensions allows us to illustrate the model
using a graduated 10-point scale where 0 means total constraint and 10 means total
freedom.

Figure 2.9 describes a project developed in-house with a set team size and a
schedule with little leeway. The team is free to determine which features to implement
and the quality level for the first version. Since the cost is linked for the most part to
staff expenses, it will differ depending on the amount of resources used. Given the
schedule allows for some leeway, deadlines may vary slightly.

Figure 2.10 describes the flexibility diagram for a critical software project in
which quality is a constraint and the schedule has a high degree of freedom. The
patterns shown in these diagrams provide an idea of the type of project you are dealing
with. A project cannot focus all its dimensions at 0. There must be some latitude with
certain levels to ensure some project success.

All too often in short discussions we tend to speak only of budget and schedules.
It is this attitude that generally leads to overruns and chronic dissatisfaction in our
industry. We therefore have to get our administrators and clients accustomed to the
reality of not always having the features requested, without defects, delivered quickly
by a small team at a low cost.

2.4 The Five Dimensions of a Software Project 55

Schedule

StaffFeatures

QualityCost

Figure 2.9 Diagram of the flexibility of an in-house project.
Source: Wiegers 1996. [WIE 96, p. 30]. Reproduced with permission of Karl E. Wiegers.

Table 2.4 can be drawn up to summarize the results of negotiation at the start of
a project. For each dimension, the table describes the driver, the constraints, and the
degree of freedom. The software engineer will attempt to describe the values given
to each dimension. The example in Table 2.4 is related to the case in Figure 2.9.

Schedule

StaffFeatures

QualityCost

Figure 2.10 Diagram of the flexibility of a critical software project.
Source: Wiegers 1996. [WIE 96]. Reproduced with permission of Karl E. Wiegers.

56 Chapter 2 Quality Culture

Table 2.4 Summary Table of Dimensions Negotiated for an In-House Project [WIE 96,
p. 32]

Dimension Driver Constraint Degree of freedom

Cost 20% overrun acceptable
Features 60–90% of priority 1 features must

be in release 1.0
Quality Release 1.0 can contain up to five

known major defects
Schedule Release 1.0 must be

delivered within 4
months

Staff Four people

A major characteristic of a quality culture and software engineering principles
is that expectations and promises are established professionally and in a negotiated
manner. Of course, this type of step may at first meet with resistance, but this approach
will help you to avoid accepting projects that are not realistic or impossible to carry
out in the conditions laid down. Therefore, you should get into the habit of taking a
pass on these unrealistic projects and not committing to unavoidable disaster! You
can also use other tools that are available to you to help make the right decisions. The
next section presents the code of ethics that can be used to convince your clients and
superiors of the importance of having a quality culture. Referring to a code of ethics
can help the engineer better understand and communicate a quality culture.

2.5 THE SOFTWARE ENGINEERING CODE OF ETHICS

The first draft of the software engineering code of ethics was developed in coopera-
tion with the Institute of Electrical and Electronics Engineers (IEEE) Computer Soci-
ety and the Association for Computing Machinery (ACM) in 1996. Following this,
the draft was widely circulated to elicit comments and suggestions for improvement.
The IEEE and the ACM approved the current version in 1998 [GOT 99a; GOT 99b;
IEE 99]).

Different perspectives clashed as the code of ethics was being developed. One
such confrontation took place in regards to how to approach ethics. The first approach
was based on the inherent virtuous nature of humans. This implies that we simply have
to indicate the proper direction and people will follow it. Proponents of this approach
wanted a code that inspires good behavior with few details. The other approach, based
on rights and obligations, requires an outline of all rights and all obligations. The
supporters of the latter approach wanted a very detailed code.

Another source of tension stemmed from conflicts in terms of what priority to
give to the code’s principles. For example, should we favor the employer or the

2.5 The Software Engineering Code of Ethics 57

public? This was resolved by indicating that the public good comes before loyalty
to the employer or to the profession.

Some people would have preferred to list the standards to be used. It was decided
not to list any and instead specify within the code that the currently accepted standards
should be used.

On the other hand, everyone agreed that software engineers must be proactive
when they become aware of potential problems within the system. Therefore, clauses
were added to require engineers to communicate potentially dangerous situations,
and to allow software engineers to denounce these types of situations.

To satisfy those who wanted a high-level code and those who wanted a more
detailed code, two versions of the code were developed: an abridged version and a
complete version.

The code has already been adopted by many organizations. For example, the code
is a document that is part of an employee contract. The employee must sign it upon
hiring. Over the years, the code became a de facto standard. In some cases, companies
may decide not to do business with a company that does not adhere to this code.

“When the devil comes to visit us, he will not have big horns. He will not do any harm, he
will not hurt a living being. He will just encourage us to lower our standards and ethics,
just a little bit, and the rest will follow . . . ”

Albert Brooks in the film “Broadcast News”

The code describes eight commitments with which peers, the public, and legal
organizations can measure the moral behavior of a software engineer (see Table 2.5).

Each commitment, called a principle here, is described in one sentence and sup-
ported by a certain number of clauses that include examples and details that help in
its interpretation. Software engineers and software developers who adopt the code
agree to respect the eight principles of quality and morality.

Following are some examples of the code of ethics: Principle 3 (product) declares
that software engineers will ensure that their products and any related changes meet
the highest possible professional standards. This principle is supported by 15 clauses.
Clause 3.10 states that software engineers will carry out the tests, debugging and
reviews of software and the related documents on which they are working.

The code has been translated into nine languages: German, Chinese, Croat-
ian, English, French, Hebrew, Italian, Japanese, and Spanish. Many organizations
have publically adopted the code of ethics and a few universities have included it as
part of their software engineering study program. The complete version is found in
Appendix 1.

58 Chapter 2 Quality Culture

Table 2.5 The Eight Principles of the IEEE’s Software Engineering Code of Ethics
[IEE 99]

Principle Description

1. The public Software engineers shall act consistently with the public interest.
2. Client and

Employer
Software engineers shall act in a manner that is in the best interests of

their client and employer, consistent with the public interest.
3. Product Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.
4. Judgment Software engineers shall maintain integrity and independence in their

professional judgment.
5. Management Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software
development and maintenance.

6. Profession Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7. Colleagues Software engineers shall be fair to and supportive of their colleagues.
8. Self Software engineers shall participate in lifelong learning regarding the

practice of their profession and shall promote an ethical approach
to the practice of the profession.

The software engineer’s code of ethics, translated in 9 languages, is available on this site:
http://seeri.etsu.edu/Codes/default.shtm

2.5.1 Abridged Version: Preamble

The abridged version of the code states the main aspirations, whereas the articles in
the complete version of the code provide examples and more information as to the
manner in which these aspirations must be reflected in the behavior of the software
engineer. Together, the abridged and complete versions of the code form a consistent
whole. Indeed, without the statement of aspirations, the code risks seeming boring
and full of legalese, and without any detailed development included, aspirations could
seem abstract and devoid of meaning.

Software engineers who are professionally involved in carrying out analysis,
specifications, design, development, tests, and maintenance must respect the prin-
ciples outlined in the code of ethics.

In accordance with their commitment to the health, safety, and the public good,
software engineers must adhere to eight principles presented in Table 2.5.

let &hbox {char '046}http://seeri.etsu.edu/Codes/default.shtm
http://seeri.etsu.edu/Codes/default.shtm

2.5 The Software Engineering Code of Ethics 59

To use the code professionally, a simple usage procedure is proposed. It is impor-
tant to understand that the practices are presented in a specific order: from most impor-
tant to least important. Therefore, you must examine any conflict and go through the
code one article at a time to see which article relates to the situation.

As soon as you identify an article in the code of ethics that represents the
situation described, you should note that the article has been infringed. Then you
should briefly explain why this situation violates the code. Continue in this way,
going through all the articles one by one, since the situation may violate more than
one article in the code.

Case Study—Confirm [OZ 94]

In 1988, a consortium made up of the Hilton and Marriott hotel chains and of the Bud-
get Rent-A-Car car rental company decided to develop a centralized reservation system
to make reservations for airplane tickets, hotel rooms, and car rentals. This project was
assigned to AMR Information Services (AMRIS), a company belonging to the Ameri-
can Airlines Corporation. This company had already successfully developed an airplane
ticket reservation system used by large companies, that is, the SABRE system.

The partners agreed on a budget not exceeding $55.7 million and a schedule of no
more than 45 months. This system had to perform transactions at a cost not exceeding
$1.05 per reservation.

At the end of the design phase in September 1989, AMRIS put forth a development
plan, which could cost $72.6 million. The cost per reservation was $1.39 instead of $1.05.

In the summer of 1990, two partners were concerned about the system delivery date.
Employees working on the CONFIRM project estimated that the project was not respect-
ing deadlines. They had been asked by their supervisors to modify their dates for updates
to reflect the original dates of the project.

In February 1991, AMRIS presented a new plan for $92 million. The president
stepped down, and, in 1992, more than 20 employees also left. The employees were not
happy with project management. They also thought that the managers imposed unrealistic
delivery dates and lied about the project status.

In the summer of 1991, a consultant, hired by the developer to evaluate the project,
submitted a report. One vice-president was not happy with the consultant’s observations.
He “buried” the report and fired the consultant. During this period, the Marriott hotel
chain was being billed $1 million a month.

In April 1992, AMRIS admitted that it was 2–6 months behind schedule. Hilton was
having serious problems with the beta version. Again in April, AMRIS wrote to the part-
ner companies about the managers deliberately concealing a number of major technical
and performance problems. It also announced that system development was behind by
15–18 months. As well, eight executives were fired, and 15 employees transferred.

60 Chapter 2 Quality Culture

In May 1992, it was announced to the partners that the CONFIRM system did not
meet the performance and reliability requirements.

In July 1992, after more than 3.5 years of development and having spent $125 mil-
lion, the project was abandoned. It was also determined that should the system crash, the
database would not be recoverable.

AMRIS settled out of court with the partner companies. This company was said to
have been sued for more than $500 million, and that it settled the entire dispute for around
$160 million.

2.5.2 The Example of the Code of Ethics of the Ordre
des ingénieurs du Québec

Since the code of ethics of the Ordre des ingénieurs du Québec, an association of
professional engineers, is quite similar to the code of ethics of the software engi-
neer presented in this chapter, we will illustrate only one of the consequences that an
engineer who does not respect this code of ethics may be subject to.

The following text box contains an example of a sanction incurred by an engineer.

Example of a Notice of Permanent Removal from a Society of
Professional Engineers

Pursuant to section 180 of the Professional Code, notice is hereby given that on June 4,
2015, the Disciplinary Council of the Society of Software Engineers has declared that Mr.
Paul Roberts, at business address 12345 Near Here Street, is guilty of various offenses,
including:

In Denver, on or about October 14, 2014, as part of an inspection mandate located at
12345, Client Avenue in Denver, the engineer Paul Roberts issued opinions that were not
based on sufficient factual knowledge about software design in his report thus violating
Article 4.02 of the Code of ethics of software engineers.

Under this decision, the Commission has ordered Mr. Paul Roberts temporarily
removed from the roll of the Society for 6 months. This decision is enforceable from
its delivery to the respondent, that is, as of June 11, 2015.

Denver, June 4, 2015
Secretary of the Disciplinary Board

Society of Software Engineers

Another possible consequence is the limitation of the right to practice for a given
period, the obligation to undergo training, fines, and the obligation to redo the pro-
fessional engineering certification.

2.5 The Software Engineering Code of Ethics 61

The following form can be used for the software staff in an organization to
demonstrate their commitment to the code of ethics.

Employee Commitment to the Code of Ethics

(Date)

I have read the Software Engineer’s Code of Ethics developed by the IEEE and ACM.

Last Name First Name Signature

You can also change the text of the form above to modify the level of commitment
for the personnel using these statements:

– I agree to adhere to the Software Engineer’s Code of Ethics developed by the IEEE and
ACM.

– I agree to respect the Software Engineer’s Code of Ethics developed by the IEEE and
ACM.

A ceremony could be held where all software professionals would swear, in front
of their colleagues, to respect the code. The ceremony would end with the signing of the
form above. This ceremony could be organized annually to remind everyone, especially
new employees, of the importance of respecting this code.

The signed form could also be made available on the organization’s intranet.
Remember that engineers from certain countries must first respect the code of ethics

imposed by their professional order.

2.5.3 Whistle Blowers

Sometimes, in an organization, a person must make certain situations public. The
whistle blower seriously thinks that the interest of the client or public is at stake,
and denounces the situation either internally or externally. Internally, he may com-
municate with the ombudsman or security group, which represents upper manage-
ment, whereas externally he can contact his professional order or a journalist. When
the whistle blower denounces a situation internally, he may be subject to pressure
or attacks from his superiors and colleagues. He might also be fired. This fear of
reprisals is quite real. However, the engineer is protected; otherwise the practice of

62 Chapter 2 Quality Culture

whistle blowing would not be encouraged. The professional tribunal ensures that the
identity of the whistle blower is protected by law, if he so wishes. As well, there
is an article in the code that stipulates the engineer being accused does not have to
communicate with the complainant should he be told his name.

2.6 SUCCESS FACTORS

In the following text box, several factors in relation to the culture of an organization
which are likely to foster the development of quality software are listed.

Factors that Foster Software Quality

1) Good team spirit.

2) The skills of the members in the organization (it is imperative that managers select
competent people in their organization to carry out the different tasks; if not, even
with good team spirit, good managers, good communication, and good processes that
are correctly applied, if people are not competent, nothing will really be effective).

3) Managers who set a good example.

4) Effective communication between colleagues, managers, and the client.

5) Recognizing and valuing initiatives to improve quality.

6) Highlighting the notion of organizational culture by qualifying it as the key factor in
guaranteeing quality.

7) Defining the culture of an organization as being a set of shared values and principles
guiding the behaviours, activities, priorities, and decisions of a group of people who
work in the same sector.

8) Including the notion of culture in an organization’s strategy and ensuring that it is
respected by all personnel.

9) In small and medium-sized businesses, there is often a discrepancy between the per-
ception and ideas of quality that the managers have as opposed to the technical teams;
therefore, it is up to the software engineer to educate managers and other members of
the organization about the implications of quality, while proposing adapted solutions
to enable the organization’s objectives to be met.

10) According to Wiegers, the level of involvement of the client throughout the project
is the factor that will have the most impact on software quality (indeed, for the client
to consider having been provided with a quality product, the product must first and
foremost accurately meet the client’s requirements. If certain requirements were not
well understood or were poorly interpreted at the beginning of the project, the costs
related to correcting the situation will only increase as the project advances): having

2.8 Exercises 63

a client representative who is involved throughout the project can only help to clear
up any ambiguities as they arise.

11) Clearly defined roles and responsibilities.

12) Allocating the necessary budgets.

In the following text box, some factors related to organizational culture which
could adversely affect the development of quality software are listed.

Factors that may Adversely Affect Software Quality

1) Give employees the responsibility but not the authority to take the actions necessary
to ensure the project’s success.

2) When we “shoot the messenger.”

3) When managers hide their heads in the sand rather than solve problems.

4) Lack of knowledge in quality assurance.

5) Unrealistic time frames.

6) A lack of common working methodology between team members.

7) A manager who says yes to everyone.

2.7 FURTHER READING

Gotterbarn D. How the new software engineering code of ethics affects you, IEEE
Software, vol. 16, issue 6, November/December 1999, pp. 58–64.

Leverson N. G. and Turner C. S. An investigation of the Therac-25 accidents, IEEE
Computer, vol. 26, issue 7, July 1993, pp. 18–41.

Wiegers K. E. Standing on principles, The Journal of the Quality Assurance Institute,
vol. 11, issue 3, July 1997, pp. 1–8.

2.8 EXERCISES

2.1 Give arguments to convince management that it is necessary and profitable to invest in
SQA.

2.2 In the most commonly used model today, the costs of quality consider five perspectives.
Describe the quality cost formula and give some examples to illustrate each perspective.

64 Chapter 2 Quality Culture

2.3 What is the relationship between software quality and the total cost of detection and
prevention according to observations made by researchers?

2.4 What are the benefits to identifying and eliminating defects early on in the software life
cycle?

2.5 How can we use the results of the Raytheon study to convince management of the
benefits of setting up SQA?

2.6 According to Weigers, what elements make up a healthy quality culture in an organi-
zation?

2.7 Name 5 of the 10 cultural principles of software engineering.

2.8 What are the five dimensions of a software project according to Wiegers?

2.9 Draw up the summary table of dimensions negotiated for the project described in Fig-
ure 2.10.

2.10 Apply the code of ethics and indicate the two main clauses that have been infringed in
the following situations:

a) Peter, a software engineer, developed software for his company. His company devel-
ops and sells inventory software. After months of work, he finds he is stuck regard-
ing several parts of the software. His manager, not understanding the complexity of
the problem, wants the work finished this week. Peter remembers that a colleague,
Francine, had showed him modules from a commercial software package that she
developed at another company. After studying this package, Peter directly incorpo-
rates some of these modules into his software. However, he did not tell Francine or
his boss, and did not mention this in the software documentation. What clauses in
the code did Peter violate?

b) A company developed software to manage a nuclear power plant. The software was
designed to manage the plant’s reactor. While inspecting the code, Marie found
major errors in the software. Frank, Marie’s boss, said that the software must be
delivered to the client this week. Marie knows that the errors will not be corrected
in time. What clauses in the code require Marie to take action?

c) In a company with approximately 10 people, you were named by the president to
apply the code of ethics. You are head of the development and maintenance team.
Describe the steps in your action plan to apply the code of ethics.

2.11 Name factors within an organization that make it easier to apply the code of ethics.

2.12 What clauses in the code of ethics require a software engineer to denounce a potentially
dangerous situation?

2.13 What clause in the code of ethics clearly states that a software engineer must not have
pirated software in his possession?

2.14 Read the CONFIRM case [OZ 94], which describes the development of a reservation
system that became a money pit, and:

a) Identify the clauses in the code that were infringed.

b) What should the AMRIS directors have done differently?

c) What could the AMRIS developers have done differently?

d) How can a consumer know whether software will cause him irreparable damage
before it is actually installed on his workstation?

2.8 Exercises 65

e) If the software causes major errors a few months after being installed, how could
the consumer have protected himself?

2.15 Read the case of Therac-25 [LEV 93], a medical device that has caused the death of
several patients, and:

a) Identify the clauses in the code that were infringed.

b) What could you have said to a representative of AECL who has made the usual
excuses in the software industry in order to avoid responsibility (complexity, testa-
bility, and development process)? To back up your answer, explain in concrete terms
what the company could have done to reduce the risks inherent in these three char-
acteristics of the software product?

c) You were recently named director of SQA for the new Therac-30 project. This
project will reuse Therac-25 technology to produce a more efficient version. What
SQA precautions should be taken?

d) You talked with the Software Quality Director for the Therac-25. He shared the
lessons learned from the incidents caused by Therac-25. List four of these lessons.

2.16 You have just purchased a new computer. The technician tells you that he installed
demo software on your computer. When you start up your computer, you notice that
commercial software was installed. What should you do?

Chapter 3

Software Quality
Requirements

After completing this chapter, you will be able to:

– describe the history of the concepts conveyed by software quality models;

– understand the different characteristics and sub-characteristics of software
quality as outlined in the ISO 25010 international standard;

– use the concepts to specify the software quality requirements of a software
product;

– explain the positive and negative interaction between the quality characteristics
of software as described in the ISO 25010 international standard;

– understand the concept of software traceability.

3.1 INTRODUCTION

All software is an element of a system, whether it be a computer system in which the
software may be used on a personal computer, or in an electronic consumer product
like a digital camera. The needs or requirements of these systems are typically docu-
mented either in a request for quote (RFQ) or request for proposal (RFP) document,
a statement of work (SOW), a software requirements specification (SRS) document
or in a system requirements document (SRD). Using these documents, the software
developer must extract the information needed to define specifications for both the
functional requirements and performance or non-functional requirements required by
the client. The term “non-functional,” as applied to requirements, is deprecated and is
not used in the Institute of Electrical and Electronics Engineers (IEEE) 730 standard
[IEE 14].

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

66

3.1 Introduction 67

Functional Requirement

A requirement that specifies a function that a system or system component must be able
to perform.

ISO 24765 [ISO 17a]

Non-Functional Requirement

A software requirement that describes not what the software will do but how the software
will do it. Synonym: design constraint.

ISO 24765 [ISO 17a]

Performance Requirement

The measurable criterion that identifies a quality attribute of a function or how well a
functional requirement must be accomplished (IEEE Std 1220TM-2005). A performance
requirement is always an attribute of a functional requirement.

IEEE 730 [IEE 14]

Software quality assurance (SQA) must be able to support the practical applica-
tion of these definitions. To achieve this, many concepts proposed by software quality
models must be mastered. This chapter is dedicated to presenting the models as well
as the software engineering standards available for correctly defining performance
or non-functional (i.e., quality) requirements of software. Using these SQA practices
early in the software development life cycle will ensure that the client receives a qual-
ity software product that meets his needs and expectations.

Quality Model

A defined set of characteristics, and of relationships between them, which provides a
framework for specifying quality requirements and evaluating quality.

ISO 25000 [ISO 14a]

The above definition of a quality model implies that the quality of software can
be measured. In this chapter, we describe the research carried out over the years that
culminated in a definition of a software quality model. Quality assurance, in certain
industries and business models overseen by the software developer, requires a more
formal management of software quality throughout the software life cycle. If it is not
possible to evaluate the quality of the resulting software, how can the client be in a

68 Chapter 3 Software Quality Requirements

position to accept it? Or at least, how can we prove that the quality requirements were
met?

In order to support this condition, a software quality model is used so that the
client can:

– define software quality characteristics that can be evaluated;

– contrast the different perspectives of the quality model that come into play (i.e.,
internal and external perspectives);

– carefully choose a limited number of quality characteristics that will serve as
the non-functional requirements for the software (i.e., quality requirements);

– set a measure and its objectives for each of the quality requirements.

It is therefore necessary for the model to demonstrate its ability to support the
quality requirements definition, and subsequently, their measurement and evaluation.
We have seen in the previous chapter that quality is a complex concept. Quality is
often measured by considering a specific perception of quality. Humankind has mas-
tered measuring physical objects for centuries, but even today, many questions remain
about measuring a software product and the ability to measure it in an objective man-
ner. The role and importance of each quality characteristic are still difficult to clearly
define, identify, and isolate. What’s more, software quality is often a subjective con-
cept that is perceived differently depending on the point of view of the client, user, or
software engineer.

Evaluation

A systematic examination of the extent to which an entity is capable of fulfilling specified
requirements.

ISO 12207 [ISO 17]

This chapter will provide the SQA practitioner with the knowledge to use the ISO
25010 software quality model concepts. In this way, he can initiate processes and sup-
port software engineers in their development, maintenance, and software acquisition
projects. We will begin by presenting the history of the different models and stan-
dards designed to characterize software quality. This will be followed by a discussion
of the concept of software criticality and its value. We will then introduce the con-
cept of quality requirements and present a process for defining quality requirements.
Lastly, the technique of software traceability, which assures that a requirement has
truly been integrated into the software, will be outlined. In a later chapter, we will
cover traceability in greater detail.

3.2 Software Quality Models 69

3.2 SOFTWARE QUALITY MODELS

Unfortunately, in software organizations, software quality models are still rarely used.
A number of stakeholders have put forth the hypothesis that these models do not
clearly identify all concerns for all of the stakeholders involved and are difficult to
use. In the next two sections, we will see that this is simply an excuse for not for-
mally defining and evaluating the quality of software before it is delivered to the
client.

Definition of Requirements: The Essential First Step

“Overall, the government has made limited progress since our last audit of IT projects in
1997. Although since 1998 the Treasury Board Secretariat has established a framework
of best practices for managing IT projects, many of the problems we cited in past reports
have persisted.

In our 1995 audit, it was noted that the government has begun to develop sys-
tems before clearly defining the system requirements for reasonable and realistic
periods.

We estimate cost overruns of $250 million for every billion spent in two projects.
Senior management’s interest and intervention in large IT development projects is
urgent.”

Report of the Auditor General of Canada [AGC 06]

Let us begin by considering the five quality perspectives described by Garvin
(1984) [GAR 84]. His study makes a link between the work of renowned software
quality experts and the proposals of quality models of the era. He questioned whether
these models take the different perspectives of quality into account:

– Transcendental approach to quality: The transcendental view of quality can be
explained as follows: “Although I can’t define quality, I know it when I see
it.” The main problem with this view is that quality is a personal and individ-
ual experience. You would have to use the software to get a general idea of
its quality. Garvin explains that software quality models all offer a sufficient
number of quality characteristics for an individual or an organization to iden-
tify and evaluate within their context. In other words, the typical model sets
out the quality characteristics for this approach, and it only takes time for all
users to see it.

– User-based approach: A second approach studied by Garvin is that quality
software performs as expected from the user’s perspective (i.e., fitness for

70 Chapter 3 Software Quality Requirements

purpose). This perspective implies that software quality is not absolute, but
can change with the expectations of each user.

– Manufacturing-based approach: This view of software quality, in which quality
is defined as complying with specifications, is illustrated by many documents
on the quality of the development process. Garvin stipulates that models allow
for defining quality requirements at an appropriate level of specificity when
defining the requirements and throughout the life cycle. Therefore, this is a
“process-based” view, which assumes that compliance with the process leads
to quality software.

– Product-based approach: The product-based quality perspective involves an
internal view of the product. The software engineer focuses on the internal
properties of the software components, for example, the quality of its architec-
ture. These internal properties correspond to source code characteristics and
require advanced testing techniques. Garvin explains that if the client is willing
to pay, then this perspective is possible with the current models. He describes
the case of NASA, who was willing to pay an extra thousand dollars per line
of code to ensure that the software aboard the space shuttle met high quality
standards.

– Value-based approach: this perspective focuses on the elimination of all activ-
ities that do not add value, for example the drafting of certain documents as
described by Crosby (1979) [CRO 79]. In the software domain, the concept of
“value” is synonymous with productivity, increased profitability, and competi-
tiveness. It results in the need to model the development process and to measure
all kinds of quality factors. These quality models can be used to measure these
concepts, but really only for insiders and mature organizations.

We will now describe these quality models. Over the past 40 years, researchers
have attempted to define “THE” model of software quality. Of course, it has taken
a while to get there. The following section describes the prior initiatives that influ-
enced the software quality standard ISO 25000 [ISO 14a] that we use today: McCall,
Richards, and Walter, and the IEEE 1061 [IEE 98b] standard.

“An important concept conveyed in all models of the quality of the software is that the
software does not directly manifest its quality attributes. Most of the proposed software
quality models fail to make the link between quality attributes and corresponding product
specifications.”

McCall et al. (1977) [MCC 77]

3.2 Software Quality Models 71

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

Product revision Product transition

Product operation

Correctness
Reliability Integrity

Usability Efficiency

Figure 3.1 The three perspectives and 11 quality factors of McCall et al. (1977) [MCC 77].

3.2.1 Initial Model Proposed by McCall

McCall and his colleagues have been attributed with the original idea for a software
quality model [MCC 77]. This model was developed in the 1970s for the United
States Air Force and was designed for use by software designers and engineers. It
proposes three perspectives for the user (see Figure 3.1) and primarily promotes a
product-based view of the software product:

– Operation: during its use;

– Revision: during changes made to it over the years;

– Transition: for its conversion to other environments when the time comes to
migrate to a new technology.

Each perspective is broken down into a number of quality factors. The model
proposed by McCall and his colleagues lists 11 quality factors.

Each quality factor can be broken down into several quality criteria (see Figure
3.2). In general, the quality factors considered by McCall are internal attributes that
fall under the responsibility and control of software engineers during software devel-
opment. Each quality factor (on the left side of Figure 3.2) is associated with two or
more quality criteria (which are not directly measurable in the software). Each quality
criterion is defined by a set of measures. For example, the quality factor “reliability”
is divided into two criteria: accuracy and error tolerance. The right side of Figure 3.2
presents the measurable properties (called “quality criteria”), which can be evaluated
(through observation of the software) to assess quality. McCall proposes a subjective
evaluation scale of 0 (minimum quality) to 10 (maximum quality).

The McCall quality model was primarily aimed at software product quality (i.e.,
the internal perspective) and did not easily tie in with the perspective of the user who
is not concerned with technical details. Take, for example, a car owner who is not
concerned with the metals or alloys used to make the engine. He expects the car to be
well designed so as to minimize frequent and expensive maintenance costs. Another

72 Chapter 3 Software Quality Requirements

Usability

Integrity

Efficiency

Reliability

Correctness

Tracebility

Completeness

Consistency

Accuracy

Error tolerance

Execution efficiency

Storage efficiency

Access control

Access audit

Operability

Training

Communicativeness

Figure 3.2 Quality factors and
criteria from McCall et al. (1977)
[MCC 77].

criticism regarding this model was that it involved far too many measurable properties
(approximately 300).

What Constitutes the External Quality and Internal Quality of
Software?

We should clarify the notions of external and internal quality. These two perspectives of
software quality are often presented in quality models. From the external point of view,
the focus is on presenting characteristics that are important to people who do not know
the technical details. For example, a user is interested in the speed in which the maintainer
can make a requested change to the software because the effort dedicated to this task has
an impact on cost and waiting time. The user neither knows nor cares about technical
details of the software, so his perspective is external.

From an internal point of view, the focus is on measuring the attributes of main-
tainability, which will influence: (1) the effort to identify where to make the change, (2)
changes to the current structures (attempting to reduce the impact of a change), (3) testing
the change, and (4) its release into production. If software is not well documented and
is poorly structured, it will have low maintainability (internal quality). This low internal

3.2 Software Quality Models 73

quality will affect the time required for making the change, which is the external char-
acteristic that interests the user. Therefore, we can see here that external quality is not a
directly observable measure, but it is derived from internal quality. Internal quality how-
ever, can be directly measured in the software.

3.2.2 The First Standardized Model: IEEE 1061

The IEEE 1061 standard, that is, the Standard for a Software Quality Metrics Method-
ology [IEE 98b], provides a framework for measuring software quality that allows
for the establishment and identification of software quality measures based on qual-
ity requirements in order to implement, analyze, and validate software processes and
products. This standard claims to adapt to all business models, types of software, and
all of the stages of the software life cycle. The IEEE 1061 standard presents examples
of measures without formally prescribing specific measures.

Figure 3.3 illustrates the structure of the major concepts proposed in this quality
model. At the top tier, we can see that software quality requires prior specification of
a certain number of quality attributes, which serve to describe the final quality desired
in the software. The attributes desired by clients and users allow for the definition of

Sofware quality of
system X

Sofware quality of
system X

Sofware quality of
system X

Software quality of
system X

Quality factor

Direct
metric(s)

Quality factor

Direct
metric(s)

Quality factor

Quality subfactorQuality subfactorQuality subfactor

Metric Metric Metric

Direct
metric(s)

Figure 3.3 Framework for measuring software quality as per the IEEE 1061 [IEE 98b].

74 Chapter 3 Software Quality Requirements

the software quality requirements. There must be a consensus with respect to these
requirements within the project team, and their definitions should be clearly written
in both the project and technical specifications.

Quality factors suggested by this standard are assigned attributes at the next tier.
At the tier below that, and only if necessary, subfactors can then be assigned to each
quality factor. Lastly, measures are associated with each quality factor, allowing for
a quantitative evaluation of the quality factor (or subfactor).

Quality Measures within the IEEE 1061 Model

As an example, users choose availability as a quality attribute. It is defined in the require-
ments specifications as being the ability of a software product to maintain a specified level
of service when it is used under specific conditions. The team establishes a quality factor,
such as mean time between failures (or MTBF).

Users wish to specify that the software should not crash too often, since it needs to
perform important activities for the organization. The measurement formula established
for Factor A = hours available/(hours available + hours unavailable). It is necessary to
identify target values for each directly measured factor. It is also recommended to provide
an example of the calculation to clearly define the measure. For example, the work team,
when preparing the system specifications, indicates that the MTBF should be 95% to be
acceptable (during service hours). If the software must be made available during work
hours, that is, 37.5 hours per week, it should therefore not be down for more than 2 hours
a week: 37.5/(37.5 + 2) = 0.949%.

Note that if you do not set a target measure (i.e., an objective), there will be no way
of determining whether the quality level for the factor was reached when implementing
or accepting the software.

This model is interesting since it provides defined steps to use quality measures
in the following situations:

– Software program acquisition: In order to establish a contractual commitment
regarding quality objectives for client-users and verify whether they were met
by allowing their measurement when adapting and releasing the software.

– Software development: In order to clarify and document quality characteristics
on which designers and developers must work in order to respect the customer’s
quality requirements.

– Quality assurance/quality control/audit: In order to enable those outside the
development team to evaluate the software quality.

– Maintenance: Allow the maintainer to understand the level of quality and ser-
vice to maintain when making changes or upgrades to the software.

3.2 Software Quality Models 75

– Client/user: Allow users to state quality characteristics and evaluate their pres-
ence during acceptance tests (i.e., if the software does not meet the specifica-
tions agreed upon by the developer, the client can negotiate to his advantage
conditions to have them met; for example, the client could negotiate free soft-
ware maintenance for a specific period of time or the addition of functions at
no additional cost).

The following steps are proposed under the IEEE 1061 [IEE 98b] standard:

– Start by identifying the list of non-functional (quality) requirements for the
software as of the beginning of the specifications elicitation. To define these
requirements, contractual stipulations, standards, and company history must be
taken into account. Set a priority for these requirements and try not to resolve
any conflicting quality requirements at this time. Make sure that all participants
can share their opinion when collecting information.

– Make sure that you meet everybody involved to discuss the factors that should
be considered.

– Make a list and make sure to resolve any conflicting points of view.

– Quantify each quality factor. Identify the measures to evaluate this factor
and the desired objective in order to meet the threshold and level of quality
expected.

– Have measures and thresholds approved. This step is important, since it will
identify the possibility of carrying out these measurements within your orga-
nization. The standard suggests that you customize and document Figure 3.4
for your specific project.

– Perform a cost–benefit study to identify the costs of implementing the measures
for the project. This may be necessary due to:
◦ additional costs to enter information, automate calculations, interpret, and

present the results;
◦ costs to modify support software;
◦ costs for software assessment specialists;
◦ the purchase of specialized software to measure the software application;
◦ training required to apply the measurement plan.

– Implement the measurement method: Define the data collection procedure,
describing storage, responsibilities, training, etc. Prototype the measurement
process. Choose which part of the software on which to apply the measures.
Use the result to improve the cost-benefit analysis. Collect data and calculate
values observed from quality factors.

– Analyze the results: Analyze the differences between the measurements
obtained and the expected values. Analyze significant differences. Identify
measures outside the expected limits for further analysis. Make decisions based

76 Chapter 3 Software Quality Requirements

Functional
suitability

Performance
efficiency

Compatibility

Usability
Reliability

Security

System/software
product quality

Functional completeness
Functional correctness
Functional appropriateness

Time-behaviour
Resource utilisation

Co-existence
Interoperability

Appropriateness
recognisability

Learnability
Operability

User error protection
User interface aesthetics

Accessibility

Maturity
Availability

Fault tolerance
Recoverability

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability

Analysability
Modifiability
Testability

Portability

Adaptability
Installability

Replaceability

Figure 3.4 Quality model for an ISO 25010 software product.
Source: ISO/IEC 25010. Reproduced with permission of the Standards Council of Canada.

on quality (redo or continue). Use validated measures to make predictions dur-
ing development. Use measures to validate the quality during tests.

– Validate the measures: It is necessary to identify measures that can pre-
dict the value of quality factors, which are numeric representations of qual-
ity requirements. Validation is not universal, but must be done for each
project. To validate measures, the standard recommends using the following
techniques:
◦ Linear correlation: If there is a positive correlation, the measure can be used

as a substitute for the factor.
◦ Identification of variations: If a factor goes from F1 (time t1) to F2 (time t2),

the measure must change in the same way. This criterion ensures that the
measure chosen can detect changes in quality.

◦ Consistency: If F1 > F2 > F3, then M1 > M2 > M3. This allows us to sort
products based on quality.

◦ Foreseeability: (Fa − Fp)/Fp < A (Fa actual factor at time t, Fp anticipated
factor at time t, A constant). This factor evaluates whether the measurement
formula can predict a quality factor with the desired accuracy (A).

◦ Power of discrimination: The measures must be able to distinguish between
high-quality software and low-quality software.

◦ Reliability: This measure must show that in P%, the correlation, identifica-
tion, consistency, and foreseeability are valid.

3.2 Software Quality Models 77

The IEEE 1061 [IEE 98b] standard has allowed us to put measurement into prac-
tice and to link product measures with client-user requirements. Since this standard
was classified as a guide, it was not very popular outside of the military for several
reasons:

– seen as being too expensive;

– some did not see its usefulness;

– the industry was not ready to use it;

– suppliers did not want to be measured in this way by their clients.

This American standard influenced international software quality standards. The
ISO 25000 [ISO 14a] standard is presented next.

3.2.3 Current Standardized Model: ISO 25000 Set of
Standards

It was during the eighth international conference in 1980, at The Hague in the Nether-
lands, that Japan proposed setting up an ISO committee to standardize an internation-
ally recognized software quality model. A work group was created, workgroup 6, and
it was assigned to Professor Motoei Azuma (an Emeritus Professor at Waseda Uni-
versity, Tokyo, Japan) who, in turn, asked for help from the international community
to study the proposals and possible solutions.

The international standardization of a software quality model, the ISO 9126 stan-
dard [ISO 01], was published for the first time in 1991. As we can see by the terminol-
ogy used by McCall et al. (1977) [MCC 77] and the IEEE 1061 [IEE 98b] standard,
there are a number of definitions and terms that were reused. The ISO 9126 [ISO 01]
standard has attempted to promote the systematic implementation of software quality
measures since 1991. However, it is little known and not often used in industry and
was replaced by the ISO/IEC 25000 standard [ISO 14a]. We continue to see that man-
ufacturers, suppliers, and major consulting firms avoid the formal use of the standard
in their services. The main reason is that it creates requirements for quality and for
guarantees that they are trying to avoid. Gradually and inevitably, this standard will
become essential for software professionals.

On February 11, 1993, the Treasury Board of Canada issued an internal directive,
Directive NCTTI 26 entitled “Software Evaluation—Quality Characteristics of Soft-
ware and Usage Guidelines” [CON 93]. This directive proposes the practical use of
the International Organization for Standardization (ISO) standard. This internal stan-
dard for information technology at the Treasury Board supports the government’s
policy for improving the management of information technology, which requires the
adoption of quality management practices, including control systems, in order to pro-
mote the acquisition, use and management of information technology resources in an
innovative and cost effective manner. Since the software industry had gained a certain

78 Chapter 3 Software Quality Requirements

level of maturity and that software was now an essential component of a number of
government products and services, it was necessary to be concerned with their qual-
ity. They went on to say that given the increasing demands for quality and safety, in
the future, evaluation of software quality should be completed using a quality model
proposed by ISO.

The Treasury Board concluded that there were basically two ways to determine
the quality of a software product: (1) assess the quality of the development process,
and (2) assess the quality of the final product. The ISO 25000 [ISO 14a] standard
allows for the evaluation of the quality of the final software product.

In some cases, ministries and agencies may decide not to use this standard, par-
ticularly when it is much more advantageous in regards to performance or cost, it is
for the general advantage of the Government of Canada, or if the ministry or agency
has a contractual obligation or is a partner of an international treaty (such as NATO).

Since 2005, ISO 25000 [ISO 14a] has provided a series of standards for the evalu-
ation of software quality. The purpose of this standard is to provide a framework and
references for defining the quality requirements of software and the way in which
these requirements will be assessed.

The ISO 25000’s series of standards recommends the following four steps
[ISO 14a]:

– set quality requirements;

– establish a quality model;

– define quality measures;

– conduct evaluations.

Note that the ISO 25000 [ISO 14a] standard was selected by the Software Engi-
neering Institute (SEI) as a useful reference for the improvement of performance pro-
cesses described in the Capability Maturity Model Integration (CMMI®) model. The
CMMI model, which describes software engineering models and standards, will be
presented in Chapter 4.

The ISO 25010 standard identifies eight quality attributes for software, as illus-
trated in Figure 3.4.

Software Quality Characteristics

The set of attributes of a software product by which the quality of this product is described,
verified, and validated.

ISO 25000 [ISO 14a]

3.2 Software Quality Models 79

To illustrate how this standard is used, we will describe the characteristic of
maintainability, which has five sub-characteristics: modularity, reusability, analyz-
ability, modifiability, and testability (see Table 3.1). Maintainability is defined, under
ISO 25010 [ISO 11i], as being the level of efficiency and efficacy with which soft-
ware can be modified. Changes may include software corrections, improvements, or
adaptation to changes in the environment, requirements, or functional specifications.

Evaluating Software Quality with the ISO 25010 Model

The quality model proposed by ISO 25010 is similar to the IEEE 1061 [IEE 98b] model.
Choose a quality characteristic to evaluate—efficiency is used in the following example.
Then choose one or more quality sub-characteristics to be evaluated (time behavior has
been chosen in the following example). The last step is to clearly specify a measurement
so that there is no possible misinterpretation of its result. A dotted line indicates that the
sub-characteristics can be bypassed if necessary.

Quality model

Characteristics

Subcharacteristics

Metrics

External quality

Efficiency

Time behavior
The capability of the software product to

provide appropriate response and processing
times and throughput rates when performing

its function, under stated conditions

Name: Response time
Measurement goal: Determine execution time

Formula: T = A – B
A = System response time
B = Task time

Two different perspectives, the internal and external points of view, of the main-
tainability of the software are often presented in software engineering publications
[LAG 96]. Approached from an external point of view, maintainability attempts to
measure the effort required to troubleshoot, analyze, and make changes to specific
software. From an internal point of view, maintainability usually involves measuring
the attributes of the software that influence this change effort. The internal measure-
ment of maintainability is not a direct measurement, that is, a single measurement for

80 Chapter 3 Software Quality Requirements

Table 3.1 Quality Factors of the ISO 25000 Standard [ISO 14a]

Factor Description

Performance efficiency Performance relative to the amount of resources used under
stated conditions

∙ Time behavior Degree to which the response and processing times and
throughput rates of a product or system, when
performing its functions, meet requirements (benchmark)

∙ Resource utilization Degree to which the amounts and types of resources used
by a product or system when performing its functions
meet requirements

∙ Capacity Degree to which the maximum limits of a product or
system parameter meet requirements

Functional suitability Degree to which a product or system provides functions
that meet stated and implied needs when used under
specified conditions

∙ Functional completeness Degree to which the set of functions covers all the specified
tasks and user objectives

∙ Functional correctness Degree to which a product or system provides the correct
results with the needed degree of precision

∙ Functional appropriateness Degree to which the functions facilitate the
accomplishment of specified tasks and objectives. As an
example: a user is only presented with the necessary
steps to complete a task, excluding any unnecessary steps

Compatibility Degree to which a product, system or component can
exchange information with other products, systems or
components, and/or perform its required functions, while
sharing the same hardware or software environment

∙ Coexistence Degree to which a product can perform its required
functions efficiently while sharing a common
environment and resources with other products, without
detrimental impact on any other product

∙ Interoperability Degree to which two or more systems, products, or
components can exchange information and use the
information that has been exchanged

Usability Degree to which a product or system can be used by
specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified
context of use

∙ Appropriateness
recognizability

Degree to which users can recognize whether a product or
system is appropriate for their needs. Appropriateness
recognizability will depend on the ability to recognize
the appropriateness of the product or system’s functions
from initial impressions of the product or system and/or
any associated documentation.

3.2 Software Quality Models 81

Table 3.1 (Continued)

Factor Description

∙ Learnability Degree to which a product or system can be used by
specified users to achieve specified goals of learning to
use the product or system with effectiveness, efficiency,
freedom from risk, and satisfaction in a specified context
of use

∙ Operability Degree to which a product or system has attributes that
make it easy to operate and control

∙ User error protection Degree to which a system protects users against making
errors

∙ User interface aesthetics Degree to which a user interface enables pleasing and
satisfying interaction for the user

∙ Accessibility Degree to which a product or system can be used by people
with the widest range of characteristics and capabilities
to achieve a specified goal in a specified context of use

Reliability Degree to which a system, product or component performs
specified functions under specified conditions for a
specified period of time

∙ Maturity Degree to which a system meets needs for reliability under
normal operation

∙ Availability Degree to which a system, product or component is
operational and accessible when required for use

∙ Fault tolerance Degree to which a system, product, or component operates
as intended despite the presence of hardware or software
faults

∙ Recoverability Degree to which, in the event of an interruption or a failure,
a product or system can recover the data directly affected
and re-establish the desired state of the system

Security Degree to which a product or system protects information
and data so that persons or other products or systems
have the degree of data access appropriate to their types
and levels of authorization

∙ Confidentiality Degree to which a product or system ensures that data are
accessible only to those authorized to have access

∙ Integrity Degree to which a system, product or component prevents
unauthorized access to, or modification of, computer
programs or data.

∙ Non-repudiation Degree to which actions or events can be proven to have
taken place, so that the events or actions cannot be
repudiated later

∙ Accountability Degree to which the actions of an entity can be traced
uniquely to the entity

82 Chapter 3 Software Quality Requirements

Table 3.1 (Continued)

Factor Description

∙ Authenticity Degree to which the identity of a subject or resource can be
proved to be the one claimed

Maintainability Degree of effectiveness and efficiency with which a product
or system can be modified by the intended maintainers

∙ Modularity Degree to which a system or computer program is
composed of discrete components such that a change to
one component has minimal impact on other components

∙ Reusability Degree to which an asset can be used in more than one
system, or in building other assets

∙ Analyzability Degree of effectiveness and efficiency with which it is
possible to assess the impact on a product or system of
an intended change to one or more of its parts, or to
diagnose a product for deficiencies or causes of failures,
or to identify parts to be modified

∙ Modifiability Degree to which a product or system can be effectively and
efficiently modified without introducing defects or
degrading existing product quality

∙ Testability Degree of effectiveness and efficiency with which test
criteria can be established for a system, product, or
component and tests can be performed to determine
whether those criteria have been met

Portability Degree of effectiveness and efficiency with which a system,
product, or component can be transferred from one
hardware, software or other operational or usage
environment to another

∙ Adaptability Degree to which a product or system can effectively and
efficiently be adapted for different or evolving hardware,
software or other operational or usage environments

∙ Installability Degree of effectiveness and efficiency with which a product
or system can be successfully installed and/or uninstalled
in a specified environment

∙ Replaceability Degree to which a product can be replaced by another
specified software product for the same purpose in the
same environment

software cannot be used and multiple attributes must be measured to draw conclu-
sions about its internal maintainability [PRE 14].

Note that the ISO 25010 standard proposes a wide range of measures for main-
tainability: size (e.g., number of lines of modified code), time (internal—in terms of
software execution, and external—as perceived by the client), effort (individual or
for a task), units (e.g., number of production failures, number of attempts to correct

3.2 Software Quality Models 83

a production failure), rating (results of formulas, percentages, or ratios for several
characteristics or types of measures, e.g., correlation between the complexity of the
software and the testing effort when modifying the software).

From an internal point of view, in order for software to be maintainable, designers
must pay special attention to its architecture and internal structure. Architecture and
software structure measures are generally extracted from the source code through
observations of the characteristics represented in the form of a graph1 describing its
classes, methods, programs, and functions of the source code of programs. Graph
studies help to determine the level of complexity of the software. Even today, there
are a large number of publications focused on the static and dynamic evaluation of
source code. These studies are inspired by those performed in the 1970s by McCabe
(1976) [MCC 76], Halstead (1978) [HAL 78], and Curtis (1979) [CUR 79].

Today we see a large number of commercial software programs and open-source,
such as Lattix, Cobertura, and SonarQube, which can measure the internal char-
acteristics of source code. These products contain ready-to-use measures and also
enable the user to design new measures based on their specific requirements. Boloix
[BOL 95] specified that it is the interpretation of these measures that is difficult, since
they are very specialized, and there are not many mechanisms to summarize informa-
tion for decision making. Software and SQA practitioners often end up with highly
technical measures without a lot of added value that can be communicated directly
to management or their clients.

Professor April [APR 00] describes the experience Cable & Wireless Inc. had
using three commercial programs used to measure the internal quality of software
(Insure++, Logiscope, and Codecheck) and how certain characteristics of maintain-
ability can be quantified from source code. In this way, a well-designed software can
be built with independent, modular, and concealed components with clear boundaries
and standardized interfaces.

By using the principle of concealing information when designing the software,
greater benefits can be obtained when changes are needed during tests or after release.
This technique has the added advantage of protecting the other parts of the application
when changes are needed. Any “side effects” can thus be reduced as a result of the
change [BOO 94].

Routine coupling measures, for their part, help determine whether the software
components are independent or not. It is specifically this code measure that helps
to identify whether there will be “side effects” upon modifying the source code. A
measure of the internal documentation of a given software may also be automatically
carried out using these and similar tools. The internal documentation of software
helps the maintenance programmer to understand, in more detail, the meaning of
the variables and the logic behind a group of instructions. Some measures point to

1 A program is associated with a graph having an input and an output, with each vertex corresponding
to a set of sequential instructions.

84 Chapter 3 Software Quality Requirements

the necessity of using a simple programming style. Certain measures will evaluate
whether the programmers upheld programming standards over time.

A substantial part of maintenance costs goes toward functional adaptations,
which become necessary given the changes required by users. “According to our
observations and data, we also see that well-structured software makes it easier to
make changes than with poorly designed software” [FOR 92].

We know that structured programming techniques are based on breaking down a
complex problem into simpler parts and force each component to have a single input
and a single output. The most common source code measures evaluate complexity
and size, and help programmers form an opinion on the number of sets of test cases
required as well as the complexity of the decisions in the source code.

“The ideal plan for unit tests is one that thoroughly executes all control flow paths of a
program. In reality, it is not practical or often nearly impossible because the number of
possible pathways is infinitely huge.”

Humphrey (1989) [HUM 89]

Note that certain non-functional requirements can have a negative interaction
with each other. For example, for usability and efficiency characteristics, the addi-
tional code and the time required to execute this code to increase usability will take up
more storage space and entail greater processing times, potentially negatively affect-
ing the efficiency of the code.

Table 3.2 illustrates, for other quality characteristics, the positive (+), negative
(−), or neutral (0) interactions. It is important to explain to users that they have choices
to make, and that each choice will have implications.

In conclusion, all software quality models have a similar structure with the same
goals. The presence of more or fewer factors, however, is not indicative of a good or
bad model. The value of a model of software quality is revealed in its practical use. It
is important to completely understand how it works as well as the interaction between
factors. Today, the model to use is the ISO model, since it represents an international
consensus.

What is important for software developers and SQA is using a standardized
model on which they can rely. It is important to use the definitions of the model
proposed by ISO 25010 with suppliers. In this way, it is not the personal proposal of
a specialist, but the use of a model and definitions that are published internationally
and are indisputable.

Ta
bl

e
3.

2
E

xa
m

pl
es

of
In

te
ra

ct
io

ns
B

et
w

ee
n

Q
ua

lit
y

A
ttr

ib
ut

es
[E

G
Y

04
]

E
ff

ec
t

R
eq

ui
re

m
en

ta
ttr

ib
ut

e
Fu

nc
tio

na
lit

y
Fu

nc
tio

na
lit

y
+

E
ffi

ci
en

cy
−

U
sa

bi
lit

y
+

R
el

ia
bi

lit
y

−
Se

cu
ri

ty
−

R
ec

ov
er

ab
ili

ty
0

A
cc

ur
ac

y
0

M
ai

nt
ai

na
bi

lit
y

−

E
ffi

ci
en

cy
0

+
/−

+
−

−
0

−
−

U
sa

bi
lit

y
+

+
/−

+
+

0
+

+
0

R
el

ia
bi

lit
y

0
0

+
+

0
0

0
0

Se
cu

ri
ty

0
−

−
+

+
0

0
0

R
ec

ov
er

ab
ili

ty
0

−
+

+
0

+
0

0
A

cc
ur

ac
y

0
−

+
0

0
0

+
0

M
ai

nt
ai

na
bi

lit
y

0
0

0
+

+
0

0
+

86 Chapter 3 Software Quality Requirements

3.3 DEFINITION OF SOFTWARE QUALITY
REQUIREMENTS

We have provided an overview of the use of software quality models. In this sec-
tion, we look at the process of defining quality requirements for software (i.e., a pro-
cess that supports the use of a software quality model). However, before delving into
quality requirements, we will first discuss all requirements expressed by stakeholders
during software development projects.

In engineering, especially in public and private RFPs, requirements are the
expression of a documented need of what a product or service should be or should
provide. They are most often used formally (specified formally), especially in systems
engineering and critical system software engineering.

A vision document or an operational concept document, or a specifications docu-
ment (requirements definition) will be prepared in order to define the high-level prob-
lem areas and solutions for the software system to be created. Typically, this document
will describe the context of the application with elements such as: the description and
business objectives of the stakeholders and key users; the target market and the possi-
ble alternatives; the assumptions, dependencies, and constraints; the inventory of the
product features to be developed as well as their priority; and requirements for infras-
tructure and documentation. This document should be clear and concise. It serves as
a guide and a reference throughout the software requirements analysis.

Concept of Operations (ConOps) Document

A user-oriented document that describes a system’s operational characteristics from the
end-user’s viewpoint.

IEEE 1362 [IEE 07]

In the classical engineering approach, requirements are considered to be prereq-
uisites to the design and development stages of a product. The requirements develop-
ment phase may have been preceded by a feasibility study, or a design analysis phase
for the project.

Once the stakeholders have been identified, activities for software specifications
can be broken down into:

– gather: collect all wishes, expectations, and needs of the stakeholders;

– prioritize: debate the relative importance of requirements based on, for exam-
ple, two priorities (essential, desirable);

– analyze: check for consistency and completeness of requirements;

3.3 Definition of Software Quality Requirements 87

Totality of software requirements

Functional Nonfunctional

Wishes, expectations,
and needs

What needs to be executed

• Domain knowledge and business rules
• Organizational and operational environment
• Interviews, brainstorming, and facilitated meetings
• Observation, user stories, and scenarios
• Requirements classification and documentation

Quality requirements

Constraints

Obligations

Software requirements management, elicitation,
analysis, specification, and validation:

Figure 3.5 Context of software requirements elicitation.

– describe: write the requirements in a way that can be easily understood by users
and developers;

– specify: transform the business requirements into software specifications (data
sources, values and timing, business rules).

Requirements for software can be summarized as presented in Figure 3.5.
Requirements are generally grouped into three categories:

1) Functional Requirements: These describe the characteristics of a system or
processes that the system must execute. This category includes business
requirements and functional requirements for the user.

2) Non-Functional (Quality) Requirements: These describe the properties that
the system must have, for example, requirements translated into quality char-
acteristics and sub-characteristics such as security, confidentiality, integrity,
availability, performance, and accessibility.

3) Constraints: Limitations in development such as infrastructure on which the
system must run or the programming language that must be used to implement
the system.

Requirements are notoriously difficult to present to an ideal degree. Often, spe-
cialized business analysts are used to bridge the gap between software users and
software specialists. These analysts have the experience, training and certification

88 Chapter 3 Software Quality Requirements

required to run meetings with users, express requirements in such a way that they
can be easily conveyed as software specifications and also be understood by the end
users.

For a few years now, an interest group, the International Institute of Business
Analysts, offers certification for business analysts.

As part of its request for proposals for a system to sell and reload transit passes, a trans-
portation company in a large city listed the non-functional requirements to be respected:

– maximum processing time of each machine information exchange must not exceed one
second;

– time for reading or coding the pass must not exceed 250 milliseconds;

– success rate for reading and coding the passes must be 99.99%.

– ability to work without being connected to the central system for up to 4 days;

– reduce equipment down time to a minimum, option of working in failsafe mode.

www.stm.info

BABOK (Business Analyst Body Of Knowledge), available at www.theiiba.org,
describes all the knowledge required to clearly define and manage business requirements
during a software project.

BABOK [BAB 15]

Requirement elicitation techniques often take into account the needs, desires, and
expectations of all parties involved that must be prioritized. All stakeholders must be
identified before this exercise can begin. At the very beginning of the process, an
initial analysis activity aims to identify the users’ business requirements. Software
requirements are generally documented using text, diagrams, and vocabulary that will
be easily understood by users and clients. Business requirements describe certain
events that take place during the carrying out of a business process and seek to identify
business rules and activities that could be taken into account by the software.

let &hbox {char '046}www.theiiba.org
http://www.theiiba.org
http://www.stm.info

3.3 Definition of Software Quality Requirements 89

Business requirements are then expressed in terms of functional requirements.
A functional requirement describes the function that will be set up to meet a busi-
ness requirement. They must be clearly expressed and be consistent. No requirement
should be redundant or conflict with other requirements. Each requirement must be
uniquely identified and be easily understood by the client. They should also be doc-
umented. The requirements that will not be taken into account shall be clearly iden-
tified as being excluded along with the reason for the exclusion. It is clear that the
management of requirements and functional specifications, and of their quality, is an
important factor in customer satisfaction.

Agile Specifications and Requirements

Conventional methods of requirements elicitation may generate a large amount of doc-
umentation. Instead of generating written documents, agile specifications and require-
ments use prototypes, rapid iterations, images, and other multimedia elements to verify
that functional requirements have been met. Agile methodologies are used in certain busi-
ness sectors and are becoming increasingly popular.

Can the quality of a requirement be defined? Yes, good software requirements
will have the following characteristics:

– Necessary: They must be based on necessary elements, that is, important ele-
ments in the system that other system components cannot provide.

– Unambiguous: They must be clear enough to be interpreted in only one way.

– Concise: They must be stated in a language that is precise, brief, and easy to
read, which communicates the essence of what is required.

– Coherent: They must not contradict the requirements described upstream or
downstream. Moreover, they must use consistent terminology throughout all
requirements statements.

– Complete: They must all be stated fully in one location and in a manner that
does not oblige the reader to refer to other texts to understand what the require-
ment means.

– Accessible: They must be realistic regarding their implementation in terms of
available finances, available resources, and within the time available.

– Verifiable: They must allow for the determination of whether they are met or
not based on four possible methods—inspection, analysis, demonstration, or
tests.

90 Chapter 3 Software Quality Requirements

The software developer should take a course in software requirements. One
chapter of the SWEBOK

®
Guide is dedicated to this topic. The software engineer, for

his part, has specific standards, such as ISO 29148 [ISO 11f] or IEEE 830 [IEE 98a]
to which he may refer. These standards describe the recommended activities for
listing all requirements in sufficient detail to allow for the designing of the product
and implementing of its quality assurance (including tests). These standards present
the activities that must be carried out by the software engineer: the description of
each stimulus (input), of each response (output) and of all processing (functions) of
the software.

ISO/IEC/IEEE 29148:2011—Systems and Software Engineering—Life Cycle
Processes—Requirements Engineering

ISO/IEC/IEEE 29148:2011 contains provisions for the processes and products related to
the engineering of requirements for systems and software products and services through-
out the life cycle. It defines the construct of a good requirement, provides attributes
and characteristics of requirements, and discusses the iterative and recursive applica-
tion of requirements processes throughout the life cycle. ISO/IEC/IEEE 29148:2011 pro-
vides additional guidance in the application of requirements engineering and manage-
ment processes for requirements-related activities in ISO/IEC 12207:2008 and ISO/IEC
15288:2008. Information items applicable to the engineering of requirements and their
content are defined. The content of ISO/IEC/IEEE 29148:2011 can be added to the exist-
ing set of requirements-related life cycle processes defined by ISO/IEC 12207:2008 or
ISO/IEC 15288:2008, or can be used independently.

ISO 29148 [ISO 11f]

All requirements must be identifiable and traceable. A different format is pro-
posed for writing documentation based on software criticality. Therefore, the software
engineer must have a thorough grasp of business analysis and make sure to carry out
the following activities regarding software requirements:

– plan and manage the requirements phase;

– elicit the requirements;

– analyze the requirements and related documentation;

– communicate and ensure approval;

– evaluate the solution and validate requirements.

Many specialized studies exist in the field of software requirements. This book
does not attempt to reiterate this knowledge, but rather to provide an overview. The

3.3 Definition of Software Quality Requirements 91

next section shows how the software engineer must proceed in order to identify qual-
ity requirements.

3.3.1 Specifying Quality Requirements: The Process

Quality is often specified or described informally in RFPs, a requirements document,
or in a systems requirement document. The software designer must interpret each
functional and non-functional requirement to prepare quality requirements from these
documents. To do this, he must follow a process. The quality requirements specifica-
tions process will allow for:

– correctly describing quality requirements;

– verifying whether the practices in place will allow for the development of soft-
ware that will meet the client’s needs and expectations;

– verifying or assessing that the software developed meets the quality require-
ments.

To identify quality requirements, the software engineer will have to carry out the
steps described in Figure 3.6. These steps can be done at the same time as defining
the functional requirements.

A non-functional requirement is something required but that does not add busi-
ness rules in a business process. Some examples of a non-functional requirement
include the number of users and transactions supported, transaction response time,
disaster recovery time, and security. Therefore, all ISO 25010 quality characteristics
and sub-characteristics fall under non-functional or performance requirements.

We will focus here on describing the quality aspects expected by clients that
would not necessarily be discussed by business analysts during business requirements
discussions.

The importance of non-functional requirements must not be underestimated.
When developing the requirements of a system, greater importance is often given
to business and functional requirements and describing the processing that the sys-
tem should provide so that users can complete their tasks. For example, an unstable
system or a system whose interface is greatly lacking but that fully meets functional
requirements cannot be deemed a success.

“In real systems, meeting non-functional requirements is often more important than meet-
ing functional requirements when defining the success or failure of a system.”

Dr. Robert Charette

92 Chapter 3 Software Quality Requirements

Identify stakeholders

Develop the
questionnaire

Conduct the
interviews

Consolidate and prioritize
results

Obtain consensus on
quality factors

Subset 1 Subset n

Figure 3.6 Steps suggested for defining
non-functional requirements.

It is the responsibility of the software engineer to look at each quality character-
istic in the ISO 25010 model and discuss whether it should be taken into account in
the project. Quality requirements should also be verifiable and stated clearly in the
same way as functional requirements. If the quality requirements are not verifiable,
they could be interpreted, applied, and evaluated differently by different stakeholders.
If the software engineer does not clarify non-functional requirements, they could be
overlooked during software development.

The first activity in Figure 3.6 describes identifying stakeholders. In fact, stake-
holders are any person or organization that has a legitimate interest in the quality of
the software. A certain number of stakeholders will express different needs and hopes
based on their own perspective. These needs and hopes may change during the system
life cycle and must be checked when there is any change.

Stakeholders rarely specify their non-functional requirements since they only
have a vague understanding of what quality really is in a software product. In

3.3 Definition of Software Quality Requirements 93

practice, they perceive them more as general costs. It is important that you remem-
ber to include a representative from the infrastructure group, security group, and any
other functional group within the company.

For subcontracted projects, quality requirements will often appear as part of the
contractual agreement between the acquirer and the representative.

The acquirer may also require a specific evaluation of the product quality when a
certain level of software criticality is required and human lives could be endangered.

Evaluation of the Functional Capacity of Software

Users often choose this characteristic. It is defined in the specifications as the ability of a
software product to carry out all specified requirements. The ability sub-characteristic
is chosen by the team and described as the percentage of requirements described
in the specification document that must be delivered (%E). The measure established
is

%E = (Number of functionalities requested/(Number of functionalities delivered))

× 100.

It is necessary to identify target values as an objective for each measure. It is also recom-
mended to provide an example of the calculations (i.e., measurement) to clearly illustrate
the measure. For example, during the writing of the specification, the project team indi-
cates that the %E should be 100% of the requirements described in the specifications
document and that they are functional and delivered, without defects, before the final
acceptance of the software for production.

Alternatively, with a lack of measurable objectives, the general policy is to accept
the most stable version of the code having the necessary functionality.

ISO 25010 [ISO 11i]

The second activity in Figure 3.6 involves developing the questionnaire that
presents the external quality characteristics in terms that are easy to understand
for managers. This questionnaire introduces the quality characteristics and asks the
respondent to choose a certain number of them and identify their importance (see
Table 3.3).

The third activity consists of meeting with stakeholders to explain to them what
is involved in identifying quality characteristics. The next activity consists of consoli-
dating the different quality requirements put forth and incorporating the decisions and
descriptions into a requirements document or a project quality plan. Quality charac-
teristics may be presented in a summary table by specifying their importance as, for
example, “Indispensable,” “Desirable,” or “Non-applicable.”

94 Chapter 3 Software Quality Requirements

Table 3.3 Example of Quality Criteria
Documentation

Quality characteristics Importance

Reliability Indispensable
User-friendliness Desirable
Operational safety Non-applicable

Measuring Quality Equals User Satisfaction

Satisfaction indicates the extent to which users are free of discomfort and is their atti-
tude to using the product. Satisfaction can be determined and measured using subjective
indicators such as whether the product is liked, satisfaction during product use, accept-
ability of the workload when carrying out different tasks, or the extent to which usage
objectives, such as productivity or ease of learning, were met. Other satisfaction mea-
sures could include the number of positive and negative comments recorded during use.
Additional information can be obtained from long-term measures such as absenteeism
rates, workload observations or reports on the software’s “health” problems.

Subjective measurements of satisfaction are produced by trying to quantify reac-
tions, attitudes, or opinions expressed by users. This quantification process may be done
through different methods, for example, by asking the user to give a number corre-
sponding to the strength of their feeling at any given time while using the product, ask-
ing users to classify products in order of preference, or by using an attitude scale in a
questionnaire.

ISO 25010 [ISO 11i]

Next, for each characteristic, the quality measure must be described in detail and
include the following information (see also the cases described in this chapter):

– quality characteristic;

– quality sub-characteristic;

– measure (i.e., formula);

– objectives (i.e., target);

– example.

The last step in defining quality requirements involves having these requirements
authorized through consensus. After the quality requirements have been accepted,
at different milestones of the project, typically when assessing a project step, these
measures will be evaluated and compared with fixed and agreed upon objectives in
the specifications.

3.5 Software Quality Requirements and the Software Quality Plan 95

Choosing Quality Measures

It is a good idea to consider measurements that are easy to set up before committing to
measuring them. Take the time to check with your colleagues, the SQA group and the
infrastructure group regarding whether the measures identified can be retrieved from the
processes, management software and monitoring programs already installed.

ISO 25010 [ISO 11i]

Of course, in order to do this, the measurement must be implemented. Challenges
to implementing a measurement program will be described in a later chapter.

3.4 REQUIREMENT TRACEABILITY DURING THE
SOFTWARE LIFE CYCLE

Throughout the life cycle, client needs are documented and developed in different
documents, such as specifications, architecture, code, and user manuals. Moreover,
throughout the life cycle of a system, many changes regarding client needs should
be expected. Every time a need changes, it must be ensured that all documents are
updated. Traceability is a technique that helps us follow the development of needs as
well as their changes.

Traceability is the association between two or more logical entities, such as
requirements and the elements of a system. Bidirectional traceability allows us to
follow how the requirements have changed and been refined over the life cycle.
Traceability is the common thread that links the elements together: when an element
is linked upstream to one element and this element is itself linked downstream to
another, a chain of cause and effect is thereby formed. In the chapter on audits and
validation, we will look at this topic in more detail.

3.5 SOFTWARE QUALITY REQUIREMENTS AND THE
SOFTWARE QUALITY PLAN

The IEEE 730 standard specifies, in section 5.4 entitled “Assessing the Product for
its Conformity with the Requirements Established” that, in the context of an acquisi-
tion of software, the function of SQA should be to ensure that the software products
comply with established requirements. It is therefore necessary to produce, collect,
and validate evidence to prove that the software product meets the required functional
and non-functional requirements.

Moreover, section 5.4.6 of IEEE 730 is entitled “Measuring Products” and spec-
ifies that the selected measures of software quality and documentation accurately

96 Chapter 3 Software Quality Requirements

represent the quality of software products. The following tasks are required by the
IEEE 730 [IEE 14]:

– Identify the necessary standards and procedures;

– Describe how the measures and attributes chosen adequately represent the
quality of the product;

– Use these measures and identify gaps between objectives and results;

– Ensure the quality of the product measurement procedures and efficiency
throughout the project.

The IEEE 730 recommends that the SQA plan define the concept of product
quality for continuous improvement. This document should address the fundamental
issues of functionality, external interfaces, performance, quality characteristics, and
computational constraints imposed by a specific implementation. Each requirement
must be identified and defined so that its implementation can be validated and verified
objectively.

3.6 SUCCESS FACTORS

Factors that Foster Software Quality

1) Good understanding of non-functional quality.

2) Good process for defining, following up, and communicating quality requirements.

3) Evaluating quality throughout the life cycle of the software.

4) Establishing software criticality before starting a project.

5) Using the benefits of software traceability.

Factors that may Adversely Affect Software Quality

1) Not taking quality requirements into account.

2) Not taking software criticality into account.

3) Making excuses to not be concerned with quality (see below).

Following is a list of excuses that you may have heard at times from people who
do not believe in the importance of quality [SPM 10]:

– “I do not have to be concerned with quality. My client is only interested in costs
and deadlines. Quality has nothing to do with these things.”

– “My project did not specify quality objectives.”

– “Quality cannot be measured. We never know the number of bugs that we did
not find.”

3.8 Exercises 97

– “Relax . . . it is not software that controls a nuclear plant or a rocket.”

– “A client might require greater productivity or quality, but not both at the same
time.”

– “To us, quality is important. We do process audits constantly.”

– “We make quality software since we follow the ISO international standards.”

– “That’s not an error . . . it’s a bug”

– “We must deliver a very high quality software product, so we set aside lots of
time to test it.”

– “This project is of high quality because the QA guys look at our documents.”

– “This software is of high quality because we reused 90% of it from another
project”

– “What is quality . . . how do you measure quality?”

– “Complexity of code has nothing to do with quality.”

– “Quality is the number of bugs in the software shipped to the client.”

– “We must not do more than is asked for in the contract. The contract said noth-
ing about quality.”

– “If this does not work now, we will repair it later at the client’s.”

– “The quality of this software is very high. We found 1,000 bugs during testing.”

– “We have no more time to test . . . we have to deliver.”

– “We will let the client find the bugs”

– “We have a very tight schedule. We do not have time to do inspections.”

3.7 FURTHER READING

Galin D. Software Quality: Concepts and Practice. Wiley-IEEE Computer Society Press,
Hoboken, New Jersey, 2017, 726 p.

3.8 EXERCISES

3.1 Describe the definition of a quality model for the software field, as well as what it must
allow the user to easily do.

3.2 Consider the McCall quality model:

a) What do you think about removing the Testability attribute from the model?

b) Should it be included in Maintainability?

3.3 It has been determined that the expandability and survivability attributes are equivalent
to flexibility and reliability.

a) Is there added value to keeping both?

b) Can they be integrated given the equivalence?

98 Chapter 3 Software Quality Requirements

3.4 Software quality—Compromises:

a) In the following space, explain that the optimization of one quality factor can be
done to the detriment of another quality factor. Explain your reasoning for the fol-
lowing factors:

Quality factor Quality factor Reasoning

1 Maintainability Efficiency (of execution)

2 Reusability Integrity

b) It is necessary to establish the complementary and opposing links between quality
factors. In the following table, for each possible correspondence, specify whether
it is complementary (C) or opposing (X), and provide an example to support your
choice.

Integrity Reliability Performance Testability Security Maintainability
Integrity

Reliability

Performance

Testability

Security

Maintainability

c) Establish the links between software classes and quality factors. Use the following
table. For each software class, give a specific example. For example, for sensitive
data, you could use a bank system database. Then for each link between software
class and quality factor, assign an importance criterion (indispensable (I) or desir-
able (D)); provide an argument in favor of this association in the appropriate box.
Again, using the example of the bank database, data integrity is an indispensable
quality factor, since data must always be correct, regardless of the operation per-
formed or external actions, such as a server crash. Note: All classes do not neces-
sarily have a relationship with all quality factors.

Integrity Reliability Ergonomics Testability Security Maintainability
Human life in danger

e.g.:
Long life

e.g.:
Experimental system

e.g.:
Real-time application

e.g.:
Embedded application

e.g.:
Sensitive data

e.g.:
Embedded systems

e.g.:
Belonging to a range

e.g.:

3.8 Exercises 99

3.5 The request for a proposal to develop a laboratory management software for a medical
laboratory network includes non-functional requirements for quality factors specifica-
tions. In the following table, you will find articles taken from the requirements doc-
ument. For each section, fill in the name of the element that best corresponds to the
requirement (choose only one factor for the requirements section). Use the following
definitions of quality factors to fill in the table.
– Reliability: Ability of a program to carry out all functions specified in a reference

document, in an operating environment, without failure for a given amount of time.
– Security: Quality attribute for software characterized by the absence of events that

endanger the integrity of property or human lives during its operation.
– Integrity: Level of protection of the system and data that it handles against unautho-

rized or malicious access.
– Ergonomics: Ability of the system to be used with a minimum level of effort.
– Efficacy: Ability of software to optimally use the available physical resources (mem-

ory space, central unit time).
– Testability: Ability of software to be verified appropriately, while the system is in

operation.
– Maintainability: Ability of software to facilitate operations required to locate and

correct an error when the system is in operation.
– Flexibility: Ability of software to adapt to a change in specifications.
– Reusability: Ability of a software component to be reused in different applications.
– Portability: Ability of software to adapt to an environment different from that of the

previous applications.
– Compatibility: Quality of several software applications (or components) related to a

given function, based on certain criteria, for example, standardization of data struc-
tures, internal communications.

No. Description of the quality requirement Quality factor

1. The probability that the “Super-lab” system software
will fail during normal operating hours (9 a.m. to 4
p.m.) must be less than 0.5%.

2. The “Super-lab” system must transfer the laboratory
analysis results to the patient file software.

3. The “Super-lab” system includes a function that
prepares a detailed report of the test results throughout
a hospital stay (a copy of this report will also be used
for the family doctor). The execution time (preparation
and printing) must be less than 60 seconds; the level of
precision and completeness of the report must be 99%
or greater.

4. The “Super-lab” software functionality is targeted for
public hospital laboratories. It must allow for easy
adaptation to the private laboratory market.

100 Chapter 3 Software Quality Requirements

No. Description of the quality requirement Quality factor

5. The training of a technician to use the software must be
done in less than three days in order for the technician
to reach the “C” skill level for using the software. This
skill level must allow him to process more than 20
patient files in an hour.

6. The “Super-lab” stores access data. As well, it must
report unsuccessful access attempts by unauthorized
personnel. This report must include the following
information: the identification of the access terminal
network, the system code used, the date and time of the
access attempt.

7. The “Super-lab” system includes a patient billing
function for laboratory tests. This sub-system will be
reused in the physiotherapy center software.

8. The “Super-lab” system will process all monthly
reports for each hospital department, as listed in
Appendix B of the contract.

9. The system must serve 12 workstations and 8 pieces of
automatic test equipment from an AS250 centralized
server, and a CS25 communications server, which will
support 25 lines of communication. The system
(software + hardware) must meet or exceed the
availability specifications described in Appendix C.

10. The “Super-lab” software developed on Linux must
also be able to work on Windows.

3.6 Calculate the MTBF for software that must be available during work hours, that is, 37.5
hours a week, and cannot fail more than 15 minutes per week.

3.7 Describe the steps proposed by the IEEE 1061 standard to determine a good definition
of non-functional requirements.

3.8 Explain the two different perspectives, the internal and external point of view, for soft-
ware maintainability, and give an example.

3.9 Describe the three categories used to classify requirements.

3.10 What is the difference between a business requirement and a functional requirement?

3.11 Describe the steps recommended for defining non-functional requirements.

3.12 Explain what is meant by bidirectional traceability of requirements.

Chapter 4

Software Engineering
Standards and Models

After completing this chapter, you will be able to:

– understand the evolution and the importance of software engineering standards
for the SQA specialist;

– understand the standards for software quality management systems: ISO 9001,
ISO/IEC 90003, ISO/IEC 20000, and the TickIT certification process [TIK 07];

– understand the software engineering standards: ISO/IEC/IEEE 12207 and
IEEE 730 that govern the content of the SQA plan;

– include other improvement models, norms, standards, and quality processes:
CMMI® maturity models of software processes and S3m, ITIL, the CobiT IT
governance approach, the ISO/IEC 27000 information security standard, and
the ISO/IEC 29110 standards for very small organizations;

– understand that there are also repositories and standards specific to certain
application domains: DO-178 and ED-12 for aeronautics, EN 50128 for rail-
ways and ISO 13485 for the field of medical devices that contain software;

– understand the importance of standards in terms of SQA.

4.1 INTRODUCTION

Other engineering domains such as mechanical, chemical, electrical, or physics engi-
neering are based on the laws of nature as discovered by scientists. Figure 4.1 illus-
trates some of the many laws of nature.

Unfortunately, software engineering, unlike other engineering disciplines, is not
based on the laws of nature. This explains, in part, some of the setbacks discussed
in Chapter 1. The number of defective software, accidents and deaths, projects over

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

101

102 Chapter 4 Software Engineering Standards and Models

x(t) = a . t2 + v0 . t + x0
1
2

E = –𝜇 . B
F12 =

q1 q2

4πε0

r2 – r1

|r2 – r1|3

Figure 4.1 A few laws of nature used by some engineering disciplines.

budget and that are delivered past deadlines, and frustrated users are some examples
of these setbacks.

The development of software is based only on the laws of logic and mathemat-
ics. Software engineering, like other disciplines, is based on the use of well-defined
practices for ensuring the quality of its products. In software engineering, there are
several standards, which are actually guides for management practices. A rigorous
process is the framework for the way standards are developed and approved includ-
ing, among others, international ISO standards and standards from professional orga-
nizations such as IEEE.

The four principles for the development of ISO standards are:

– ISO standards meet a market need.

– ISO standards are based on worldwide expertise.

– ISO standards are the result of a multi-stakeholder process.

– ISO standards are based on consensus.

The ISO standards are developed by consensus, as defined below. Consensus is
required to produce a standard that will be accepted by the community of interest.

Consensus

General agreement characterized by the absence of sustained opposition to substantial
issues by any important part of the concerned interests and by a process that involves

4.1 Introduction 103

seeking to take into account the views of all parties concerned and to reconcile any con-
flicting arguments.

Note: Consensus need not imply unanimity.
ISO Directive, Part 1

Consensus means (adapted from Coallier (2003) [COA 03]):

– That all parties were able to express their views;

– The best effort has been made to take into account all opinions and solve all
problems (i.e., all the submissions in a vote of the draft of a standard).

Standard

A set of mandatory requirements established by consensus and maintained by a recog-
nized body to prescribe a disciplined and uniform approach, or to specify a product, with
respect to mandatory conventions and practices.

ISO 24765 [ISO 17a]

The first condition to bear in mind is that standards, which differ from other writ-
ten guidelines, are quasi-legal documents. Standards can be used either to prove or
refute elements in a court of law. Standards often become legal requirements when
they are adopted by governments and regulatory agencies. When this occurs, the con-
tent of a standard is important, since organizations then use it to develop products and
services that can greatly impact human life, the environment, or business.

“Organizations formalize behavior to reduce its variability, and, ultimately, to predict it
and control it.”

Mintzberg (1992) [MIN 92]

The right-hand side of Figure 4.2 shows the development of standards as of the
1970s when the American Department of Defense (DoD) created the “DoD-STD-
1679A” military standard [DOD 83]. At that time, a contract was given to a supplier

104 Chapter 4 Software Engineering Standards and Models

PSP

IEEE/EIA
12207

Baldrige

ISO/IEC
15504

People CMM

IPD-
CMM*

SECAM

SCE

MIL-STD-
498

DOD-
STD-

2167A

MIL-STD
499B*

IEEE
1220

SDCE

SE-CMM

EIA
731

EIA/IS
632

Série
ISO 9000

Ansi/EIA 632

SSE-
CMM

CMMI

SA-
CMM

DOD-
STD-
2168

FAA-
iCMM#

RTCA
DO-178B

SW-CMM

ISO
15939

PSM

SCAMPI

CBA IPI

SAM

FAM**
Sigma

six

J-STD
016

DOD-
STD-

7935ATSP

PSP

IEEE/EIA
12207

Baldrige

ISO/IEC
15504

People CMM

IPD-
CMM*

SECAM

SCE

MIL-STD-
498

DOD-
STD-

2167A

MIL-STD
499B*

IEEE
1220

SDCE

SE-CMM

EIA
731

EIA/IS
632

ISO 9000

Ansi/EIA 632

SSE-
CMM

CMMI

SA-
CMM

Q9000

DOD-
STD-
2168

FAA-
iCMM#

RTCA
DO-178B

SW-CMM

TL9000

ISO
15939

PSM

SCAMPI

CBA IPI

SAM

FAM**
Sigma

six

J-STD
016

DOD-
STD-

7935ATSP

ISO/IEC 29110

CMMI-DEV
CMMI-SVC
CMMI-ACQ

ISO/IEC/IEEE
15289

ISO/IEC/IEEE
12207

ISO/IEC/IEEE 15288
ISO/IEC 90003

Figure 4.2 The development of standards and models.
Source: Adapted from Sheard (2001) [SHE 01] with the permission of Systems and Software
Consortium, Inc.

to develop a piece of software, and it took months, if not a year before receiving the
final product. Since the client did not see any development with this process, and, in
the end, received boxes containing documents and magnetic tape, this approach was
called the “Big Bang.” The DoD then decided that the entire software development
process had to become more transparent to allow documents produced throughout the
development cycle to be evaluated. The military standard required that the supplier
write and have a number of documents approved. These approvals allowed clients to
review, comment, and approve documents instead of waiting until the end and receiv-
ing software that did not meet their needs. Review and approval activities for docu-
ments were related to certain project management activities: the approval of these
documents led to the payment of a large sum of money as agreed to in the contract
with the supplier. This enabled the client to remotely control the development of the
requested software. Over the years, other organizations such as the IEEE, the Inter-
national Organization for Standardization (ISO), and the European Space Agency
(ESA) developed standards. During the late 1980s, the American DoD decided to
use commercial standards instead of military standards, such as ISO/IEC/IEEE 12207
[ISO 17], to develop its software. Military software engineering standards were then
removed.

On the left-hand side of the figure, we note the “Capability Maturity Model”
(CMM®). It was developed at the request of the American DoD, by the Software
Engineering Institute (SEI) in order to provide a road map of engineering practices to
improve the performance of the development, maintenance and service provisioning
processes. This model is described in a later section.

4.1 Introduction 105

The Continuous Evolution of Standards

The standards presented in this book are constantly evolving. They are reviewed periodi-
cally and, if necessary, updated. Some standards are updated about every 5 years. Others
are updated if major changes are needed. In an organization, it is possible that different
versions of the same standard are used. For example, when an agreement or a contract
is signed, we normally quote the latest version of the standard in the contract. In some
organizations, such as those working in military defense and aerospace, a development
or maintenance project can span over many years if not several decades. In such cases, it
is possible that the customer prefers to continue the project with the version of the stan-
dard used at the beginning of the project, while for the same organization, a new project
will use the latest version of the same standard. Developers and SQA must then carry out
their responsibilities with the two versions of the same standard and use templates and
checklists specific to each version.

Figure 4.3 illustrates the evolution of standards that are maintained and published
under the responsibility of the appointed subcommittee for standardized processes,
tools, and supporting technologies for software engineering and systems: ISO/IEC
JTC1 SC7.

The ISO Name

Because the name “International Organization for Standardization” would have resulted
in different abbreviations in different languages (e.g. “IOS” in English and “OIN” in
French), the founders opted for a short name “ISO”. This name is derived from the Greek
“ISOS”, meaning “equal”. Whatever the country, whatever the language, the short form
of the name of the organization is therefore always ISO.

ISO website (https://www.iso.org/about-us.html)

In the 1980s, there were only five standards; in 2016, more than 160 standards
make up the portfolio of sub-committee 7 (SC7). This rapid increase is due, among
others, to the fact that more software engineering practices have matured and acquired
a broad consensus since the late 1980s.

More than 39 countries actively participate in the development of SC7 standards
and 20 countries participate as observers. For countries that actively participate and
have the right to vote, the meaning of the Greek word “ISOS” implies that the vote of
any ISO member country is equal to the vote of any other country, no matter its size,
economic, or political influence.

https://www.iso.org/about-us.html

F
ig

ur
e

4.
3

T
he

ev
ol

ut
io

n
of

st
an

da
rd

s
SC

7
[S

U
R

17
].

4.1 Introduction 107

The majority of software engineering standards of SC7 describe proven prac-
tices such as configuration management and quality assurance (QA) practices, while
a small number of standards, such as ISO 25000 presented in the previous chapter,
describe product requirements.

The ISO/IEC/IEEE 24765 [ISO 17a] glossary will be used as the reference for
most of the definitions in this book. When a term is not defined in the ISO 24765, the
definition of another standard will be used, such as ISO 9001, the IEEE standard or
CMMI® for Development [SEI 10a].

ISO/IEC/IEEE 24765—Systems and Software Engineering Vocabulary [ISO 17a].
An online glossary can be consulted and downloaded at the following address:

www.computer.org/sevocab

In recent years, some software engineering standards in the portfolio of SC7 saw
their scope expanded as the practices described can be applied to a wider area than
software engineering alone. For example, the scope of software engineering standards
of verification and validation, risk management, and configuration management has
been extended to cover the field of systems engineering that develop products which
often include hardware (e.g., electronic, mechanical, and optical) and software. Thus,
a greater number of engineers and developers use the same standards. This facilitates
communication between different domains.

System

Combination of interacting elements organized to achieve one or more stated purposes.

Note 1 to entry: A system is sometimes considered as a product or as the services it
provides.

Note 2 to entry: In practice, the interpretation of its meaning is frequently clarified
by the use of an associative noun, e.g. aircraft system. Alternatively, the word “sys-
tem” is substituted simply by a context-dependent synonym, e.g. aircraft, though this
potentially obscures a system principles perspective.

Note 3 to entry: A complete system includes all of the associated equipment, facili-
ties, material, computer programs, firmware, technical documentation, services and
personnel required for operations and support to the degree necessary for self-
sufficient use in its intended environment.

ISO 15288 [ISO 15c]

let &hbox {char '046}www.computer.org/sevocab
http://www.computer.org/sevocab

108 Chapter 4 Software Engineering Standards and Models

4.2 STANDARDS, COST OF QUALITY, AND
BUSINESS MODELS

In a previous chapter, we presented the notions of cost of quality and business mod-
els. Regarding cost of quality, standards are an element of prevention costs: in other
words, the costs incurred by an organization to prevent errors from happening during
different stages in the development or maintenance process. Table 4.1 lists the differ-
ent prevention cost elements. Purchasing, training, and standards implementation are
also prevention costs.

We will briefly review the main business models in the software industry, namely
(adapted from Iberle (2002) [IBE 02]):

– Custom systems written on contract: The organization makes profits by selling
tailored software development services for clients.

– Custom software written in-house: The organization develops software to
improve organizational efficiency.

– Commercial software: The company makes profits by developing and selling
software to other organizations.

– Mass-market software: The company makes profits by developing and selling
software to consumers.

– Commercial and mass-market firmware: The company makes profits by selling
software in embedded hardware and systems.

The standards are commonly used in the following business models: custom sys-
tems written on contract, mass-market software and commercial and mass-market
firmware. In these business models, standards are used to optimally manage develop-
ment and minimize errors and risks. As for the “Custom systems written on con-
tract” business model, it is the client who will decide whether or not to impose
standards.

Table 4.1 Prevention Costs (Adapted from Krasner (1998) [KRA 98])

Major
category Subcategories Definition Typical cost

Prevention
costs

Quality basis
definition.

Efforts to define quality, set
quality goals, standards,
and thresholds.Quality
trade-off analysis.

Defining release criteria for
acceptance testing and
related quality standards.

Project and
process-
oriented
interventions.

Efforts to prevent poor
product quality or
improve process quality.

Training, process
improvements, metrics
collection, and analysis.

4.3 Main Standards for Quality Management 109

In this chapter, we present a brief overview of some standards: process standards,
product standards, and quality systems. We also present the CMMI model because
its widespread use has made it a de facto standard.

4.3 MAIN STANDARDS FOR QUALITY
MANAGEMENT

This section describes the main standards related to the management of software qual-
ity: ISO 9000 [ISO 15b] and ISO 9001 [ISO 15] and the application guide for soft-
ware, the ISO/IEC 90003 standard. We also present a brief overview of the quality
standard for the medical domain.

4.3.1 ISO 9000 Family

As described on the ISO website, “The ISO 9000 family addresses various aspects
of quality management and contains some of ISO’s best known standards. The stan-
dards provide guidance and tools for companies and organizations who want to ensure
that their products and services consistently meet customer’s requirements, and that
quality is consistently improved.” The ISO 9000 family includes the following four
standards.

Standards in the ISO 9000 family include:

� ISO 9001:2015 - sets out the requirements of a quality management system
� ISO 9000:2015 - covers the basic concepts and language
� ISO 9004:2009 - focuses on how to make a quality management system more efficient

and effective
� ISO 19011:2011 - sets out guidance on internal and external audits of quality manage-

ment systems.

Principles of quality management, http://www.iso.org/iso/qmp_2012.pdf

The ISO 9001 standard provides the basic concepts, principles and vocabulary
of quality management systems (QMS) and is the basis for other standards for QMSs
[ISO 15]. The “Quality Management Principles” (QMP) are a set of values, rules,
standards, and fundamental convictions regarded as fair and that could be the basis
for quality management. ISO 9001 proposes the following for each QMP:

– A statement that describes the principle.

– A foundation that explains why this principle is important for the organization.

let &hbox {char '046}http://www.iso.org/iso/qmp_2012.pdf
http://www.iso.org/iso/qmp_2012.pdf

110 Chapter 4 Software Engineering Standards and Models

– The main benefits associated with this principle.

– Possible actions to improve the performance of the organization by applying
this principle.

The seven QMP of the ISO 9001, presented in order of priority, are [ISO 15]:

– Principle 1: Customer focus
◦ Organizations depend on their customers and therefore should understand

current and future customer needs, should meet customer requirements and
strive to exceed customer expectations.

– Principle 2: Leadership
◦ Leaders establish unity of purpose and direction of the organization. They

should create and maintain the internal environment in which people can
become fully involved in achieving the organization’s objectives.

– Principle 3: Involvement of people
◦ People at all levels are the essence of an organization and their full involve-

ment enables their abilities to be used for the organization’s benefit.

– Principle 4: Process approach
◦ A desired result is achieved more efficiently when activities and related

resources are managed as a process.

– Principle 5: System approach to management
◦ Identifying, understanding, and managing interrelated processes as a system

contributes to the organization’s effectiveness and efficiency in achieving its
objectives.

– Principle 6: Factual approach to decision making
◦ Effective decisions are based on the analysis of data and information.

– Principle 7: Mutually beneficial supplier relationships
◦ An organization and its suppliers are interdependent and a mutually benefi-

cial relationship enhances the ability of both to create value.

As an example, the first principle of customer focus is described in detail
[ISO 15]:

– Statement
◦ The main objective of quality management is to satisfy customer require-

ments and strive to exceed their expectations.

– Basis
◦ Sustainable performance is achieved when an organization obtains and

retains the confidence of customers and of other interested parties. Every
aspect of the interaction with customers provides an opportunity to create
more value for the customer. Understanding the current and future needs of
customers and other stakeholders contributes to the sustainable performance
of the organization.

4.3 Main Standards for Quality Management 111

– Benefits
◦ Increased customer value
◦ Increased customer satisfaction
◦ Improved customer loyalty
◦ Improved recurring business activity
◦ Improved corporate image
◦ Expanded customer base
◦ Increased sales and market share

– Possible actions
◦ Identify direct and indirect customers for which the organization creates

value.
◦ Understand the needs and expectations of current and future customers.
◦ Link the objectives of the organization to the needs and expectations of its

clients.
◦ Communicate the needs and expectations of clients at all levels of the orga-

nization.
◦ Plan, design, develop, produce, deliver, and support products and services to

meet the needs and expectations of customers.
◦ Measure and monitor customer satisfaction and take appropriate action.
◦ Identify the needs and expectations of interested parties that may affect cus-

tomer satisfaction and take appropriate action.
◦ Actively manage relationships with customers to achieve sustainable perfor-

mance.

The ISO 9001 standard [ISO 15] applies to all organizations regardless of size,
complexity, or business model. ISO 9000 specifies requirements for a QMS, as
defined in the following text box, for both internal groups and for external partners.

Management System

Set of interrelated or interacting elements of an organization to establish policies and
objectives, and processes to achieve those objectives.

Note 1 to entry: A management system can address a single discipline or several
disciplines, e.g. quality management, financial management or environmental man-
agement.

Note 2 to entry: The management system elements establish the organization’s struc-
ture, roles and responsibilities, planning, operation, policies, practices, rules, beliefs,
objectives and processes to achieve those objectives.

112 Chapter 4 Software Engineering Standards and Models

Note 3 to entry: The scope of a management system can include the whole of the
organization, specific and identified functions of the organization, specific and iden-
tified sections of the organization, or one or more functions across a group of orga-
nizations.

Note 4 to entry: This constitutes one of the common terms and core definitions for
ISO management standards.

Quality Management System

Part of a management system with regard to quality.
ISO 9001 [ISO 15]

ISO 9001 [ISO 15] is used worldwide in a wide range of organizations. About
a million certificates of conformity to ISO 9001 are issued annually in nearly 187
countries.

ISO 9001 uses the process approach, the Plan-Do-Check-Act (PDCA) approach,
and a risk-based thinking approach [ISO 15]:

– The process approach allows an organization to plan its processes and their
interactions.

– The PDCA cycle allows an organization to ensure that its processes are
adequately resourced and appropriately managed and that opportunities for
improvement are identified and implemented.

– The risk-based thinking approach allows an organization to determine the fac-
tors that may cause deviation from its processes and its QMS in relation to
expected results, to implement preventive measures in order to limit negative
effects and exploit opportunities when they arise.

The ISO 9001 [ISO 15] standard indicates that an organization can use a com-
plementary improvement approach to that of the continuous improvement approach
such as a drastic change, an innovation or a reorganization.

Figure 4.4 shows the elements of a process and the interaction between these ele-
ments. Note that the figure shows the links between processes with “Input sources”
(e.g., upstream process) and “Target outputs” (e.g., downstream processes) to illus-
trate that a process does not work in isolation in an organization. The organization
must master not only the elements of a process, but also the interactions and inter-
dependencies between them, in order to improve its overall performance, such as
reduced rework as presented in the section on the cost of quality.

Also note that one of the output elements in Figure 4.4 is a service. ISO 9000
defines a service as follows: output of an organization with at least one activity nec-
essarily performed between the organization and the customer. For example, in soft-
ware development, the organization that developed software for its client could offer
implementation services and maintenance of the software.

4.3 Main Standards for Quality Management 113

Sources of
inputs

Predecessor
processes
e.g. at providers
(internal or external)
at customers, at
other relevant
interested parties

Inputs Activities Outputs Receivers of
outputs

Matter, energy
information,
e.g. in the form
of materials,
resources,
requirements

Matter, energy
information,
e.g. in the form
of product,
service,
decision

Subsequent
processes
e.g. at customers
(internal or
external),at other
relevant
interested parties

Possible controls and
check points to

monitor and measure
performance

Starting point End point

Figure 4.4 Elements of a process [ISO 15].
Source: Standards Council of Canada.

ISO 9001 describes the elements of the PDCA cycle as follows [ISO 15]:

– Plan: establish the objectives of the system, processes and resources to deliver
results in accordance with customer requirements and policies of the organi-
zation, identify and address risks and opportunities;

– Do: implement what has been planned;

– Check: monitor and measure (if applicable) processes and the products and
services obtained against policies, objectives, requirements and planned activ-
ities, and report the results;

– Act: take actions to improve performance, as needed.

The requirements of ISO 9001 are presented in the following 10 items:

1) Scope

2) Normative references

3) Terms and definitions

4) Context of the organization

5) Leadership

6) Planning

7) Support

8) Implementation of operational activities

9) Performance evaluation

10) Improvement

114 Chapter 4 Software Engineering Standards and Models

We have only briefly described the main articles of the standard. In regards to
article 4, ISO 9001 [ISO 15] requires the organization to determine the pertinent
external and internal issues. These issues, as for the needs and expectations of the
interested parties, the QMS and its scope, have a great influence on the ability to
achieve the expected results of its QMS. Article 5 of the standard explains that man-
agement must demonstrate leadership and commitment to the QMS and that the cus-
tomer must ensure the establishment of the quality policy of the organization and must
ensure that the responsibilities and authorities of roles have been assigned, commu-
nicated, and understood. Article 6 describes the actions to be implemented in regards
to the risks and opportunities, the objectives of the QMS, the planning of actions to
achieve these objectives, and the planning of changes to the QMS. Article 7 presents
the requirements for resources for the establishment of the QMS, its implementation,
updating, and the continuous improvement of the QMS: human resources, infrastruc-
ture, resources for monitoring, measurement, traceability, the knowledge and skills
required of personnel, the needs of internal and external communication and docu-
mentation (e.g., creating, updating). Article 8 describes in detail the implementation
of operational activities of the organization such as the process planning, the determi-
nation and review of the requirements of its products and services, design and devel-
opment, products and services processes of its external suppliers, production and
release of its product and services, and the identification of non-compliant output ele-
ments compared with requirements. Article 9 describes the requirements for perfor-
mance evaluation, such as monitoring the extent of analysis and evaluation, customer
satisfaction, internal audits, and management reviews of the QMS. Finally, article 10
provides the requirements for improvement such as improving customer satisfaction,
non-compliance and corrective actions, and continuous improvement of the QMS.

Preconceptions
� ISO 9001 is a standard for large organizations.
� ISO 9001 standard is complicated to implement.
� ISO 9001 is expensive to implement.
� ISO 9001 is a standard that applies only to manufacturing.
� ISO 9001 is an administrative burden.

ISO 9001—Debunking the myths [ISO 15]
http://www.iso.org/iso/iso_9001_debunking_the_myths.pdf

The ISO 19011 standard [ISO 11g], which establishes guidelines for internal and
external audits of QMSs, will be presented in the chapter on audits. ISO 9004 [ISO
09a], which shows how to increase the efficiency and effectiveness of a QMS, will
be presented in the chapter concerning policies and processes.

let &hbox {char '046}http://www.iso.org/iso/iso_9001_debunking_the_myths.pdf
http://www.iso.org/iso/iso_9001_debunking_the_myths.pdf

4.3 Main Standards for Quality Management 115

4.3.2 ISO/IEC 90003 Standard

The ISO/IEC 90003 [ISO 14] standard provides guidelines for the application of the
ISO 9001 standard to computer software. It provides organizations with instructions
for acquiring, supplying, developing, using and maintaining software. The following
text box is part of the introduction to the ISO 90003 standard.

It identifies the issues which should be addressed and is independent of the technology,
life cycle models, development processes, sequence of activities and organizational struc-
ture used by an organization. The guidance and identified issues are intended to be com-
prehensive but not exhaustive. Where the scope of an organization’s activities includes
areas other than computer software development, the relationship between the computer
software elements of that organization’s quality management system and the remaining
aspects should be clearly documented within the quality management system as a whole.

Throughout ISO 9001:2000, “shall” is used to express a provision that is binding
between two or more parties, “should” to express a recommendation among possibilities
and “may” to indicate a course of action permissible within the limits of ISO 9001:2000.
In this International Standard (ISO/IEC 90003), “should” and “may” have the same mean-
ing as in ISO 9001:2000, i.e. “should” to express a recommendation among possibilities
and “may” to indicate a course of action permissible within the limits of this International
Standard.

Organizations with quality management systems for developing, operating or main-
taining software based on this International Standard may choose to use processes from
ISO/IEC 12207 to support or complement the ISO 9001:2000 process model.

Where text has been quoted from ISO 9001:2000, that text is enclosed in a box, for
ease of identification.

Adapted from ISO 90003 [ISO 14]

An example, Section 7.3.5 of the ISO 9001 standard is provided below as it is
presented in the ISO 90003 standard.

ISO 9001:2008, Quality Management Systems—Requirements

7.3.5 Design and Development Verification
Verification shall be performed in accordance with planned arrangements (see 7.3.1) to
ensure that the design and development outputs have met the design and development
input requirements. Records of the results of the verification and any necessary actions
shall be maintained (see 4.2.4).

The explanatory text from the ISO 90003 standard for Section 7.3.5 is shown in
the following text box.

116 Chapter 4 Software Engineering Standards and Models

Verification of software is aimed at providing assurance that the output of a design and
development activity conforms to the input requirements.

Verification should be performed as appropriate during design and development.
Verification may comprise reviews of design and development output (e.g. by inspections
and walk-throughs), analysis, demonstrations including prototypes, simulations or tests.
Verification may be conducted on the output from other activities, e.g. COTS, purchased
and customer-supplied products.

The verification results and any further actions should be recorded and checked when
the actions are completed.

When the size, complexity or criticality of a software product warrants, specific
assurance methods should be used for verification, such as complexity metrics, peer
reviews, condition/decision coverage or formal methods.

Only verified design and development outputs should be submitted for acceptance
and subsequent use. Any findings should be addressed and resolved, as appropriate. For
more information, see ISO 12207.

Adapted from ISO 90003 [ISO 14]

The text of the ISO 90003 standard correctly explains what a software audit is
for the organization wishing to set up a QMS as well as for the QMS auditor.

Differences between ISO 9001:2015 and CMMI® for Development Version 1.3

The scope of the ISO 9001 is broader than that of the CMMI-DEV:

– CMMI-DEV applies to development and maintenance activities.

– The ISO 9001 applies to all activities of an organization. Sector-specific applications
of ISO 9001 have been developed (e.g., medical devices, petroleum, petrochemical and
natural gas industries).

The level of abstraction is different:

– CMMI-DEV is about 470 pages and contains a wealth of practical examples.

– The ISO 9001 is only 29 pages, whereas all the standards of the ISO 9000 family is
about 180 pages (www.iso.org).

CMMI-DEV is less subject to interpretation given that each process area in the model
is discussed at length. ISO/IEC 90003, a 54-page document, provides guidance for organi-
zations in the application of ISO 9001 to the acquisition, supply, development, operation,
and maintenance of computer software.

let &hbox {char '046}www.iso.org
http://www.iso.org

4.4 ISO/IEC/IEEE 12207 Standard 117

The assessment is different:

– CMMI: An organization is evaluated by a team comprised of a lead appraiser, licensed
by the CMMI Institute (www.cmmiinstitute.com), accompanied by an assessment team
that typically consists of members of the organization evaluated and external assessors.

– ISO 9001: The Quality Management System (QMS) of an organization is audited by
an audit team, (i.e., one or more persons supported, if needed, by technical experts),
authorized by a governmental or non-governmental certification body to perform ISO
9001 audits. An accreditation body is an organization that is usually established by
a national government which assesses certification bodies and certifies their technical
competence to carry out the certification process.

The CMMI appraisal usually lasts longer and is more in-depth than an ISO 9001 audit:

– CMMI: The main result of the appraisal is a list of strengths and weaknesses for initi-
ating an improvement process. The appraisal team provides, for an appraisal using the
staged representation of CMMI, a maturity level rating for the organization assessed.

– ISO 9001: The result of the audit is an ISO 9001 certificate–proof that the audited
organization meets the requirements of the standard. A set of audit findings (i.e., results
of the collected audit evidence against audit criteria) are documented.

The next section discusses the ISO/IEC/IEEE 12207 [ISO 17] standard for soft-
ware engineering, which describes all the software life cycle processes (from cradle
to grave).

4.4 ISO/IEC/IEEE 12207 STANDARD

The third edition of the ISO/IEC/IEEE 12207 standard [ISO 17] establishes a com-
mon framework for software life cycle processes. It applies to the acquisition of sys-
tems and software products and services, supply, development, operation, mainte-
nance, and disposal of software products and the development of the software part
of a system, whether performed internally or externally to an organization. In this
standard, the software also includes the firmware. Each process of the standard is
described in a few pages, and includes the following attributes [ISO 17]:

– The title conveys the scope of the whole process.

– The purpose describes the goals of performing the process.

– The outcomes express the observable results expected from the successful per-
formance of the process.

– The activities are sets of cohesive tasks of a process.

– The tasks are requirements, recommendations, or permissible actions intended
to support the achievement of the outcomes.

let &hbox {char '046}www.cmmiinstitute.com
http://www.cmmiinstitute.com

118 Chapter 4 Software Engineering Standards and Models

Disposal process

Maintenance process

Operation process

Validation process

Transition process

Verification process

Integration process

System analysis process

Architecture definition process

System/software requirements
definition process

Technical processes

Measurement process

Information management
process

Configuration management
process

Risk management process

Decision management
process

Project assessment and
control process

Project planning process

Technical management
process

Quality management process

Human resource
management process

Portfolio management
process

Infrastructure management
process

Life cycle model management
process

Organizational
project-enabling

processes

Supply process

Acquisition process

Agreement processes

Stakeholder needs and
requirements definition

process

Knowledge management
process

Quality assurance process

Business or mission analysis
process

Design definition process

Implementation process

Figure 4.5 The four life cycle process groups of ISO 12207 [ISO 17].
Source: Standards Council of Canada.

ISO 12207 [ISO 17] defines four sets of processes as shown in Figure 4.5:

– Two agreement processes between a customer and a supplier;

– Six organizational project-enabling processes;

– Eight processes for technology management;

– Fourteen technical processes.

As most modern systems are now controlled by software, the ISO 12207 [ISO 17]
standard has been updated to interface with the new edition of the standard in engi-
neering systems: ISO/IEC/IEEE 15288 [ISO 15].

Since ISO 12207 [ISO 17] is an important software engineering standard, we
briefly describe one process (we will not describe the details of each task): The QA
process [ISO 17]:

– Purpose
◦ The purpose of the QA process is to help ensure the effective application of

the organization’s quality management process to the project.

4.4 ISO/IEC/IEEE 12207 Standard 119

◦ QA focuses on providing confidence that quality requirements will be ful-
filled. Proactive analysis of the project life cycle processes and outputs is
performed to assure that the product being produced will be of the desired
quality and that organization and project policies and procedures are fol-
lowed.

– Outcomes
◦ As a result of the successful implementation of the QA process:

� Project QA procedures are defined and implemented.
� Criteria and methods for QA evaluations are defined.
� Evaluations of the project’s products, services, and processes are per-

formed, consistent with quality management policies, procedures, and
requirements.

� Results of evaluations are provided to relevant stakeholders.
� Incidents are resolved.
� Prioritized problems are treated.

– Activities and tasks
◦ The project shall implement the following activities and tasks in accordance

with applicable organization policies and procedures with respect to the mea-
surement process.

Note IEEE 730-2014 [IEE 14], software quality assurance (SQA) pro-
cesses, provides additional detail.
� Prepare for QA. This activity consists of the following tasks:

� Define a QA strategy.
� Establish independence of QA from other life cycle processes.

� Perform product or service evaluations. This activity consists of the fol-
lowing tasks:
� Evaluate products and services for conformance to established criteria,

contracts, standards, and regulations.
� Monitor that verification and validation of the outputs of the life cycle

processes are performed to determine conformance to specified require-
ments.

� Perform process evaluations. This activity consists of the following tasks:
� Evaluate project life cycle processes for conformance.
� Evaluate tools and environments that support or automate the process for

conformance.
� Evaluate supplier processes for conformance to process requirements.

� Manage QA records and reports. This activity consists of the following
tasks:
� Create records and reports related to QA activities.
� Maintain, store, and distribute records and reports.
� Identify incidents and problems associated with product, service, and

process evaluations.
� Treat incidents and problems. This activity consists of the following tasks:

� Record, analyze, and classify incidents.

120 Chapter 4 Software Engineering Standards and Models

� Identify selected incidents to associate with known errors or problems.
� Record, analyze and classify problems.
� Identify root causes and treatment of problems where feasible.
� Prioritize treatment of problems (problem resolution) and track correc-

tive actions.
� Analyze trends in incidents and problems.
� Identify improvements in processes and products that may prevent future

incidents and problems.
� Inform designated stakeholders of the status of incidents and problems.
� Track incidents and problems to closure.

The reader may have noticed the use of the term “shall” in the sentence “The project shall
implement the following activities and tasks.” In ISO engineering standards terminology,
the words “shall”, “should” and “may” have been defined as follows: “Requirements of
this document are marked by the use of the verb “shall”. Recommendations are marked
by the use of the verb “should”. Permissions are marked by the use of the verb “may”.
However, despite the verb that is used, the requirements for conformance are selected as
described previously”.

In other words, unless you, as a supplier of a software, have been granted permission
by your customer, all the activities and tasks have to be performed. The implementation
of these activities and tasks may be verified through a formal audit conducted by the
customer or his representative. Audits will be presented in Chapter 6 of this book.

The ISO 12207 standard can be used in one or more of the following modes
[ISO 17]:

– By an organization: to help establish an environment of desired processes.
These processes can be supported by an infrastructure of methods, procedures,
techniques, tools, and trained personnel. The organization may then employ
this environment to perform and manage its projects and progress software
systems through their life cycle stages. In this mode this document is used to
assess conformance of a declared, established environment to its provisions.

– By a project: to help select, structure and employ the elements of an established
set of life cycle processes to provide products and services.

– By an acquirer and a supplier: to help develop an agreement concerning pro-
cesses and activities.

– By organizations and assessors: to serve as a process reference model for use
in the performance of process assessments that may be used to support orga-
nizational process improvement.

4.5 ISO/IEC/IEEE 15289 Standard for the Description of Information Elements 121

4.4.1 Limitations of the ISO 12207 Standard

The ISO 12207 standard describes the limitations to its use as follows (adapted from
[ISO 17]):

– It does not prescribe a specific system or software life cycle model, develop-
ment methodology, method, model, or technique.
◦ The users of this document are responsible for selecting a life cycle model for

the project and mapping the processes, activities, and tasks in this document
into that model. The parties are also responsible for selecting and applying
appropriate methodologies, methods, models, and techniques suitable for the
project.

– It does not establish a management system or require the use of any manage-
ment system standard.
◦ It is intended to be compatible with the QMS specified by ISO 9001, the

service management system specified by ISO/IEC 20000-1 [ISO 11h], and
the information security management system (ISMS) specified by ISO/IEC
27000.

– It does not detail information items in terms of name, format, explicit content,
and recording media.
◦ ISO/IEC/IEEE 15289 addresses the content for life cycle process informa-

tion items (documentation).

4.5 ISO/IEC/IEEE 15289 STANDARD FOR THE
DESCRIPTION OF INFORMATION ELEMENTS

With the abandonment of military standards that defined the content and format of
information elements, the international community developed a standard, ISO 15289
[ISO 17b], in support, among others, to ISO 12207 [ISO 17], to facilitate the descrip-
tion of the different types of information items to be produced.

Information Item

Separately identifiable body of information that is produced, stored, and delivered for
human use.

Note 1 to entry: “Information product” is a synonym. A document produced to meet
information requirements can be an information item, or part of an information item,
or a combination of several information items.

Note 2 to entry: An information item can be produced in several versions during a
project or system life cycle.

ISO 15289 [ISO 17b]

122 Chapter 4 Software Engineering Standards and Models

Table 4.2 Generic Types of Information Items Described by the ISO 15289 [ISO 17b]

Type Purpose Sample output

Description Represents a plan or an existing function, design or
item.

Description of the
design

Policy Establish an organization’s high-level intention and
approach to achieve objectives for, and ensuring
effective control of, a service, process, or
management system.

Quality
management
policy

Plan Define when, how, and by whom specific processes
or activities are to be performed.

Project plan

Procedure Defines in detail when and how to perform certain
activities or tasks including tools needed.

Problem resolution
procedure

Report Describe the results of activities such as
investigations, assessments, and tests. A report
communicates decisions.

Problem report
Validation report

Request Record information needed to solicit a response. Change request
Specification Provide requirements for a required service,

product, or process.
Software

specification

The clauses of ISO 12207 [ISO 17] list the artifacts to produce without defining
the content. The ISO 15289 standard describes seven types of documents: request,
description, plan, policy, procedure, report, and specification. These document types
are described in Table 4.2.

For example, the ISO 15289 standard defines what a procedure is and what it
must describe. The following text box describes this type of document [ISO 17b].

Procedure

Purpose: Define in detail when and how to perform certain processes, activities or tasks,
including tools needed.

A procedure shall include the following elements:

a) Date of issue and the status;

b) Scope;

c) Issuing organization;

d) Approval authority;

e) Relationship with other plans and procedures;

f) Authoritative references;

g) Inputs and outputs;

4.6 IEEE 730 Standard for SQA Processes 123

h) Ordered description of steps to be performed by each participant;

i) Error and problem resolution;

j) Glossary;

k) Change history.

Examples of procedures:

– Audit procedure

– Configuration management procedure

– Enhancement procedure

– Documentation procedure

– Measurement procedure

ISO 15289 [ISO 17b]

The IEEE 730 [IEE 14] standard for the SQA process is presented next. This
standard is based on ISO 12207 [ISO 17] and ISO 15289 [ISO 17b].

4.6 IEEE 730 STANDARD FOR SQA PROCESSES

The scope of the IEEE 730-2014 Standard for SQA Processes [IEE 14] is very differ-
ent from that of previous versions. Unlike previous versions, where the QA plan was
the cornerstone of IEEE 730, the new version establishes the requirements for the
planning and implementation of SQA activities for a software project. QA according
to IEEE is a set of proactive measures to ensure the quality of the software product.
The IEEE 730 provides guidance for the SQA activities of products or of services.
The QA plan is presented in a clause and an annex of the standard.

The following text box provides the definition SQA of the IEEE 730 [IEE 14].

Software Quality Assurance

A set of activities that define and assess the adequacy of software processes to provide
evidence that establishes confidence that the software processes are appropriate for and
produce software products of suitable quality for their intended purposes.

IEEE 730 [IEE 14]

Publishers of a standard must use official versions of standards, that is, the latest
published version, when producing a new standard or the revision of a published

124 Chapter 4 Software Engineering Standards and Models

standard. The IEEE 730-2014 [IEE 14] standard is harmonized with the 2008 version
of ISO 12207 [ISO 17] and the 2011 version of ISO 15289 [ISO 17b]. After the
publication of the IEEE 730 in 2014, a new version of ISO 15289 was published in
2016 and ISO had also initiated a revision of ISO 12207 [ISO 17]. Given that the IEEE
730 used the 2008 version of the ISO 12207 as a normative reference, we present it
below.

The IEEE 730 is structured as follows [IEE 14]:

– Clause 1 describes the scope, purpose, and an introduction.

– Clause 2 identifies normative references used by the IEEE 730.

– Clause 3 defines the terms, abbreviations and acronyms.

– Clause 4 describes the context for the SQA processes and SQA activities, and
covers expectations for how this standard will be applied.

– Clause 5 specifies the processes, activities and SQA tasks. Sixteen activities
grouped into three categories are described: implementation of SQA process,
product assurance, and process assurance.

– Twelve informative annexes A–L, where annex C provides guidelines for cre-
ating a SQAP.

While the development of ISO standards is done with the participation of member coun-
tries and their technical experts, the IEEE standards are developed through the individual
contributions of experts.

Along with its standards, the IEEE publishes the list of participants in a work-
ing group that developed or updated a norm and who voted (e.g., approve, disapprove,
abstain). Professor Laporte actively participated in the working group of the IEEE 730
and voted to approve the revised version. He is also the author of an annex that provides
a mapping between the IEEE 730 and ISO 29110, which aims to help very small organi-
zations that develop software or systems. The ISO 29110 will be presented in a section
of this chapter.

The following text, taken from clause 7 of ISO 12207-2008, describes the pur-
pose and the outcomes of the SQA process.

Software Quality Assurance Process

Purpose

Provide assurance that work products and processes comply with the provisions and pre-
defined plans.

4.6 IEEE 730 Standard for SQA Processes 125

Outcomes

Following the successful implementation of the software quality assurance process:

a) a strategy for conducting quality assurance is developed;

b) evidence of software quality assurance is produced and maintained;

c) problems and/or non-compliance with the requirements are identified and
recorded; and

d) compliance to standards, procedures and applicable requirements is checked for
products, processes and activities.

ISO 12207-2008

The SQA process of the IEEE 730 is grouped into three activities: the imple-
mentation of the SQA process, product assurance, and process assurance. Activities
consist of a set of tasks.

4.6.1 Activities and Tasks of SQA

IEEE 730 [IEE 14] describes what must be done by a project; it assumes that the
organization has already implemented SQA processes before the start of a project.
The activities and tasks of the IEEE 730 are presented next.

The standard includes a clause that describes what is meant by compliance. The
following text box defines this term.

Compliance

Doing what has been asked or ordered; as required by rule or law (e.g. comply with a
regulation).

IEEE 730 [IEE 14]

Compliance with all requirements of IEEE 730 [IEE 14] can be imposed by a
client in an agreement (e.g., a contract) with the organization that will develop soft-
ware. However, a given project may not need to use all the activities of the standard.
The implementation of the standard implies the selection of a set of activities adapted
to a project. For any activity or task that will not be performed, the standard requires
that the SQAP describes them as not applicable and include a justification as to why
the activity or task will not be performed. In order to improve, an organization can
choose to gradually implement the activities and tasks of the IEEE 730.

Figure 4.6 shows the links between project requirements and artifacts produced
during a project. The figure shows two categories of compliance: process assurance

C
o

m
p

ly
C

o
n

fo
rm

C
o

n
fo

rm
C

o
n

fo
rm

R
ul

es

R
eg

ul
at

io
ns

La
w

s

C
o

n
tr

a
c

t

S
ta

ke
ho

ld
er

re
qu

ire
m

en
ts

C
o

n
fo

rm
C

o
n

fo
rm

C
o

n
fo

rm

P
ro

c
e
s
s

re
q

u
ir

e
m

e
n

ts

P
la

n
s

a
n

d
p

ro
c
e
s
s
e
s

S
ta

n
d

a
rd

s
a
n

d
p

ro
c
e
d

u
re

s

P
ro

d
u

c
t

(s
y

s
te

m
)

re
q

u
ir

e
m

e
n

ts

S
o

ft
w

a
re

re
q

u
ir

e
m

e
n

ts

E
x
e
c
u

ti
o

n
o

f
a
c
ti

v
it

ie
s

D
o

c
u

m
e
n

ta
ti

o
n

K
e
y

P
ro

du
ce

s

D
er

iv
ed

 fr
om

In
fo

rm
s

S
o

ft
w

a
re

P
ro

c
e

s
s

a
s
s
u

ra
n

c
e

P
ro

d
u

c
t

a
s
s
u

ra
n

c
e

F
ig

ur
e

4.
6

T
he

lin
ks

be
tw

ee
n

re
qu

ir
em

en
ts

an
d

th
e

ar
tif

ac
ts

of
a

pr
oj

ec
t[

IE
E

14
].

4.6 IEEE 730 Standard for SQA Processes 127

and product assurance. The figure also describes the transitive relationships for com-
pliance: if process requirements are consistent with the contract and if the process
and project plans meet the process requirements, then the project process and plans
comply with the contract. This simplifies the work of the SQA as each artifact of the
project does not have to be checked against the contract. Each artifact must be verified
with respect to its immediate predecessor.

The IEEE 730 [IEE 14] does not require that the activities be performed by any
unit of the organization (e.g., an SQA department); it requires that responsibilities are
assigned to the SQA function with the resources needed to perform the SQA activities
described by the standard.

A basic principle of the IEEE 730 is to first understand the risks of the software
product to ensure that the SQA activities are appropriate for the risks of the product.
This means that the extent and depth of SQA activities that will be defined in the
SQAP are determined by the risk associated with the software product.

4.6.1.1 SQA Process Implementation Activities

These activities aim to develop a strategy for conducting SQA, planning, and execut-
ing the activities and producing and maintaining the evidence. The six SQA process
implementation activities are [IEE 14]:

– Establish the SQA processes to define and establish documented SQA pro-
cesses that exist independently of the organization’s projects.

– Coordinate with related software processes to coordinate activities and SQA
tasks with other software processes such as verification and validation, reviews,
audits, and other processes of ISO 12207 [ISO 17] that are relevant to the
achievement of project objectives.

– Document SQA planning to document the activities, tasks, and results that
are appropriate for the risks of a specific project. Planning SQA also includes
adapting generic processes to the specific needs and risks of a project. The
result of this planning is documented in the SQAP. Figure 4.7 shows the con-
tents of the SQAP. There are 13 tasks associated to this activity, we have only
listed the main tasks of this activity:
◦ Use this standard and appendix C to help prepare an SQAP that is appropri-

ate for the project, which meets the needs of all stakeholders and which is
appropriate for the risks of the product.

◦ Review and update the SQA level as the project evolves.
◦ Present information on the status of the project to management in the agreed

manner.
◦ Estimate the resources of the SQA function (including effort, schedule, peo-

ple, required skills, tools and equipment) needed to perform the SQA activ-
ities, tasks, and outcomes.

128 Chapter 4 Software Engineering Standards and Models

1 Purpose and scope
2 Definitions and acronyms
3 Reference documents
4 SQA plan overview

4.1 Organisation and independence
4.2 Software product risk
4.3 Tools
4.4 Standards, practices, and conventions
4.5 Effort, resources, and schedule

5 Activities, outcomes and tasks
5.1 Product assurance

5.1.1 Evaluate plans for conformance
5.1.2 Evaluate product for conformance
5.1.3 Evaluate plans for acceptability
5.1.4 Evaluate product life-cycle support for conformance
5.1.5 Measure products

5.2 Process assurance
5.2.1 Evaluate life cycle processes for conformance
5.2.2 Evaluate environments for conformance
5.2.3 Evaluate subcontractor processes for conformance
5.2.4 Measure processes
5.2.5 Assess staff skill and knowledge

6 Additional considerations
6.1 Contract review
6.2 Quality measurement
6.3 Waivers and deviations
6.4 Task repetition
6.5 Risk to performing SQA
6.6 Communications strategy
6.7 Non-conformance process

7 SQA records
7.1 Analyze, identify, collect, file, maintain and dispose
7.2 Availability of records

Figure 4.7 Table of contents of a SQAP according to the IEEE 730 [IEE 14].

◦ Analyze product risks, standards, and assumptions that could impact quality
and identify specific SQA activities, tasks, and specific outcomes that could
help determine whether these risks are mitigated effectively.

◦ Analyze the project and adapt SQA activities accordingly so that they are
commensurate with the risks.

◦ Define specific measures for the evaluation of projects, software quality, per-
formance of SQA function compared with quality objectives of the project
and those of the quality management of the organization.

◦ Identify and track changes to the project that require additional planning from
SQA function including changes to the requirements, resources, schedule,
project scope, priorities, and product risk.

4.7 Other Quality Models, Standards, References, and Processes 129

◦ If process areas or activities are not adequately addressed by the quality man-
agement function of the organization, or if the organization does not have a
quality management function, these process areas can be documented in the
SQAP.

– Execute the SQAP in coordination with the project manager, the project team,
and organizational quality management.

– Manage SQA records to create records of the activities, tasks and results of
SQA; manage and control them and make them available to stakeholders.

– Evaluate organizational independence and objectivity to determine if those
responsible for SQA occupy a position in the organization that allows them
to have direct communication with the organization’s management.

We will not describe the remaining 10 activities of IEEE 730 listed below in
detail here since they will be described in other chapters of this book.

4.6.1.2 Product Assurance Activities

The five product assurance activities that aim to evaluate adherence to the require-
ments are [IEE 14]:

– evaluate plans for compliance to contracts, standards, and regulations;

– evaluate product for compliance to established requirements;

– evaluate product for acceptability;

– evaluate the compliance of product support;

– measure products.

4.6.1.3 Process Assurance Activities

The five process assurance activities which verify adherence to standards and proce-
dures are [IEE 14]:

– evaluate compliance of the processes and plans;

– evaluate environments for compliance;

– evaluate subcontractor processes for compliance;

– measure processes;

– assess the skill and knowledge of personnel.

4.7 OTHER QUALITY MODELS, STANDARDS,
REFERENCES, AND PROCESSES

This section presents the quality models, standards, reference, and processes specific
to the software industry and that are used by many organizations worldwide. First,

130 Chapter 4 Software Engineering Standards and Models

maturity models for software processes are presented, followed by the ITIL reference
and its ISO/IEC 20000-1 standard [ISO 11h]. Next, we will look at the IT governance
processes proposed by the CobiT reference. We will then present the family of ISO
27000 standards for information security, followed by the ISO/IEC 29110 standards
for very small organizations.

4.7.1 Process Maturity Models of the SEI

The SEI developed several Capability Maturity Models (CMM®). In this section, we
will present the CMMI model used to develop products (e.g., software, system) and
services.

The CMMI for Development (CMMI-DEV) covers a broader area than its prede-
cessor by adding other practices, such as systems engineering, and the development
of integrated processes and products. It was formed from the following model prac-
tices: version 2.0 of the SW-CMM, the “Systems Engineering Capability Model” of
the Electronic Industries Alliance [EIA 98] and version 0.98 of the “Integrated Prod-
uct Development CMM” model.

The CMMI model was developed as two versions: an initial staged version
and a continuous version, which is the first CMM model for systems engineer-
ing (Systems Engineering CMM, SE-CMM). The CMMI is available in several
languages: Germany, English, Traditional Chinese, French, Spanish, Japanese, and
Portuguese.

Just like the SW-CMM model, the objective of this model is to encourage orga-
nizations to check and continuously improve their development project process and
evaluate their level of maturity on a five-level scale as proposed by the staged CMMI
model.

Two other CMMI models were developed based on architecture, namely the
CMMI for Services (CMMI-SVC) [SEI 10b] and the CMMI for Acquisition (CMMI-
ACQ) [SEI 10c]. The CMMI-SVC model provides guidelines for organizations that
provide services either internally or externally, whereas the CMMI-ACQ model pro-
vides guidelines for organizations that purchase products or services. All three CMMI
models use 16 common process areas.

For each level of maturity, a set of process areas are defined. Each area encom-
passes a set of requirements that must be met. These requirements define which ele-
ments must be produced rather than how they are produced, thereby allowing the
organization implementing the process to choose its own life cycle model, its design
methodologies, its development tools, its programming languages, and its documen-
tation standard. This approach enables a wide range of companies to implement this
model while having processes that are compatible with other standards.

Table 4.3 describes the maturity levels as well as the process areas for each matu-
rity level in the CMMI-DEV model.

4.7 Other Quality Models, Standards, References, and Processes 131

Table 4.3 CMMI Maturity Levels of the Staged Representation [SEI 10a]

CMMI Development Model Maturity Levels [SEI 10a]
Model practices are grouped into 22 process areas, which are further broken down into five

maturity levels.

Maturity Level 1: Initial
At maturity level 1, processes are usually ad hoc and chaotic. The organization usually does

not provide a stable environment to support processes. Success in these organizations
depends on the competence and heroics of the people in the organization and not on the
use of proven processes. In spite of this chaos, maturity level 1 organizations often
produce products and services that work, but they frequently exceed the budget and
schedule documented in their plans.

Maturity level 1 organizations are characterized by a tendency to overcommit, abandon
their processes in a time of crisis, and be unable to repeat their successes.

Maturity Level 2: Managed
At maturity level 2, the projects have ensured that processes are planned and executed in

accordance with policy; the projects employ skilled people who have adequate resources
to produce controlled outputs; involve relevant stakeholders; are monitored, controlled,
and reviewed; and are evaluated for adherence to their process descriptions. The process
discipline reflected by maturity level 2 helps to ensure that existing practices are retained
during times of stress. When these practices are in place, projects are performed and
managed according to their documented plans.
Process areas:
� Requirements management
� Project planning
� Project monitoring and control
� Supplier agreement management
� Measurement and analysis
� Process and product quality assurance
� Configuration management

Maturity Level 3: Defined
At maturity level 3, processes are well characterized and understood, and are described in

standards, procedures, tools, and methods. The organization’s set of standard processes,
which is the basis for maturity level 3, is established and improved over time. These
standard processes are used to establish consistency across the organization. Projects
establish their defined processes by tailoring the organization’s set of standard processes
according to tailoring guidelines.

132 Chapter 4 Software Engineering Standards and Models

Table 4.3 (Continied)

Process areas:
� Requirements development
� Technical solution
� Product integration
� Verification
� Validation
� Organizational process focus
� Organizational process definition
� Organizational training integrated project management
� Risk management
� Decision analysis and resolution

Maturity Level 4: Quantitatively managed
At maturity level 4, the organization and projects establish quantitative objectives for

quality and process performance and use them as criteria in managing projects.
Quantitative objectives are based on the needs of the customer, end-users, organization,
and process implementers. Quality and process performance is understood in statistical
terms and is managed throughout the life of projects.
Process areas:
� Organizational process performance
� Quantitative project management

Maturity Level 5: Optimizing
At maturity level 5, an organization continually improves its processes based on a

quantitative understanding of its business objectives and performance needs. The
organization uses a quantitative approach to understand the variation inherent in the
process and the causes of process outcomes.
Process areas
� Organizational performance management
� Causal analysis and resolution

Figure 4.8 presents an overview of the CMMI model structure. Each process
area has generic and specific goals, practices, and sub-practices. The specific goals,
practices, and sub-practices are “specific” to a process area, such as Requirements
Management, although the generic goals, practices, and sub-practices apply to all
process areas for a given maturity level. Each process area also includes explanatory
notes and references for other process areas. As indicated in the legend for Figure
4.8, model components are required, expected, or informative. The SEI defines these
three components in the following way [CHR 08]:

– Required components describe what an organization must achieve to satisfy a
process area;

4.7 Other Quality Models, Standards, References, and Processes 133

Key:

Process
area

Related
process

area

Introductory
notes

Purpose
statement

Generic goalsSpecific goals

Example
work

products
Subpractices

Subpractices

Generic
practice

elaborations

Required InformativeExpected

Generic
practices

Specific
practices

Figure 4.8 Structure of the staged representation of the CMMI [SEI 10a].

– Expected components describe what an organization can implement to achieve
a required component. Expected components guide those who implement
improvements or perform evaluations;

– Informative components provide details that help organizations initiate the pro-
cess by specifying the way to understand required and expected components.

The concept of CMM model characteristics was transferred to the CMMI: these
are generic goals and practices. For level 2 of the staged representation of the CMMI
model, the 10 generic practices are [SEI 10a]:

1) Establish an organizational policy: establish and maintain an organizational
policy for planning and performing the process.

2) Plan the process: establish and maintain the plan for performing the process.

3) Provide resources: provide adequate resources for performing the process,
developing the work products, and providing the services of the process.

4) Assign responsibility: assign responsibility and authority for performing the
process, developing the work products, and providing the services of the pro-
cess.

5) Train people: train the people performing or supporting the process as needed.

6) Control work products: place selected work products of the process under
appropriate levels of control.

134 Chapter 4 Software Engineering Standards and Models

Organizational performance management
causal analysis and resolution5 Optimizing

4 Quantitatively
managed

3 Defined

2 Managed

Continuous
process
improvement

Quantitative
management

Process
standardization

Basic
project
management

Organizational process performance
quantitative project management

Requirements development
Technical solution
Product integration
Verification
Validation
Organizational process focus
Organizational process definition
Organizational training
Integrated project management
Risk management
Decision analysis and resolution

Requirement management
Project planning
Project monitoring and control
Supplier agreement management
Measurement and analysis
Process and product quality assurance
Configuration management

Quality
productivity

Risk
rework

1 Initial

Key process areaLevel Focus

Figure 4.9 The staged representation of the CMMI® for Development model.
Source: Adapted from Konrad (2000) [KON 00].

7) Identify and involve relevant stakeholders: identify and involve the relevant
stakeholders of the process as planned.

8) Monitor and control the process: monitor and control the process against the
plan for performing the process and take appropriate corrective action.

9) Objectively evaluate adherence: objectively evaluate adherence of the process
and selected work products against the process description, standards, and
procedures, and address non-compliance.

10) Review status with higher level management: review the activities, status, and
results of the process with higher level management and resolve issues.

Figure 4.9 presents the process areas associated with maturity levels in the staged
version of the CMMI development model. The path flow through the CMMI model
is carried out gradually. To meet the requirements for a process area, the organization
must satisfy all the goals of the given process area. In the same way, in order to
move up between maturity levels, all goals must be satisfied for the process areas in
question, as well as for all the goals of the process areas of the lower levels of process
maturity.

This section presented a maturity model that should help software development
organizations: “Given that software maintenance is a specific field of software engi-
neering, it is therefore necessary to focus on the processes and methodologies that

4.7 Other Quality Models, Standards, References, and Processes 135

take into account the specific characteristics of software maintenance” [BAS 96]. The
next section introduces a maturity model designed to improve the software mainte-
nance process.

CMMI® Institute

The CMMI Institute has taken over responsibility from the Software Engineering Institute
for the CMMI models. CMMI documents, in several languages, can be downloaded free
of charge from http://cmmiinstitute.com.

4.7.2 Software Maintenance Maturity Model (S3m)

The software maintenance maturity model S3m (available at www.s3m.ca) proposes
a structured approach to address a number of issues that arise in the context of the
daily maintenance of software [APR 08]:

– software maintenance is a discipline mainly derived from industrial practices;

– a relatively large gap exists between the academic literature and the industrial
practices;

– validation of improvement proposals made by consultants;

– many inconsistencies in terms that are often poorly defined with regard to
the different proposals, approaches, presentations, and publications in main-
tenance;

– scarcity and difficulty in acquiring/adapting a specific methodology for soft-
ware maintenance;

– there is no universal consensus;

– publications that are often optimistic (i.e., proposing unproven theories and
miracle tools);

– problems that take on their full meaning when software and organizations reach
a certain size.

Figure 4.10 illustrates the structure of the S3m model.
Some authors have studied the differences and similarities between software

development and maintenance activities. The maintenance organizational unit is
structured to meet quite different challenges, such as randomly occurring daily events
and requests from users, while providing continued service on the software for which
it is responsible.

let &hbox {char '046}http://cmmiinstitute.com
http://cmmiinstitute.com
let &hbox {char '046}www.s3m.ca
http://www.s3m.ca

136 Chapter 4 Software Engineering Standards and Models

2.1 Event/request management
2.2 Maintenance planning
2.3 Maintenance requests monitoring and control
2.4 SLA and supplier agreement management

2. Request management

3. Evolution
 engineering

1. Process
 management

4. Support
 to evolution
 engineering

3.1 Predelivery and transition of software
3.2 Operational support services
3.3 Software evolution and correction services
3.4 Verification and validation

4.1 Configuration and version management
4.2 Process, service and product quality assurance
4.3 Maintenance measurement and analysis
4.4 Causal analysis and problem resolution
4.5 Software rejuvenation, migration and retirement

1.1 Maintenance process focus
1.2 Maintenance process/service definition
1.3 Maintenance training
1.4 Maintenance process performance
1.5 Maintenance innovation and deployment

Figure 4.10 Structure of the S3m model [APR 08].

When we refer to software maintenance in the S3m model, we are specifically
considering the operational support activities, corrections and software evolution
that occur daily. The characteristics that are specific to software maintenance are
[ABR 93]:

– Modification requests (MRs) come in on an irregular basis and cannot be
accounted for individually in the annual budget planning process.

– MRs are reviewed and prioritized by the developer, often at the operational
level. Most do not require senior management involvement.

– The maintenance workload is not managed using project management tech-
niques but rather by using queue management techniques and sometimes sup-
ported by Helpdesk software.

– The size and complexity of maintenance requests is such that it can usually be
handled by one or two maintainers.

– The maintenance workload is user-services oriented, for the short term, to
ensure that the operating software is running smoothly on a daily basis.

– Priorities can be shifted around at any time (sometimes hourly), and problem
reports requiring that corrections be made immediately to the software in pro-
duction take priority over any other work in progress.

4.7 Other Quality Models, Standards, References, and Processes 137

Additionally, in many organizations, maintenance is often performed by different
organizational groups than the software development groups.

The software maintenance maturity model:

– relates to the daily software maintenance activities rather than large-scale activ-
ities that should be managed using proven techniques in project management—
in these specific large maintenance projects, it is the CMMI model that should
be used;

– is based on the customers’ perspective;

– is relevant for the maintenance of application software (a) developed and main-
tained internally, (b) configured and maintained internally or with a subcon-
tractor’s help, and (c) outsourced to an external supplier;

– provides references and details for each exemplary practice;

– offers an improvement approach based on road maps and maintenance cate-
gories;

– covers the software maintenance life cycle standards described in ISO 12207;

– covers most ISO 9001 characteristics and practices and relevant parts of the
CMMI-DEV that apply to small maintenance;

– integrates references to additional software maintenance practices documented
in other software and quality improvement models like ITIL, that we will cover
in the next section.

A support team, which includes a technician and programmer for a section of the Cana-
dian Forces, supports some 20 applications, which are all in use. Programmers are con-
stantly in project mode and put the requests they receive from users in a priority order.
The projects on which they are working all have delivery deadlines. However, it is very
difficult to make time estimates when there may be weeks where the team receives a
dozen requests that may require everything come to a halt until everything is fixed and
validated.

The team had to set up a stringent daily schedule, where they work 30% of the day
on requests and 70% on projects. On top of that, there are also standards for responding to
the client in order to ensure better customer service. The team must now respond within
72 hours, and if the request is not completed, it must follow up every 14 days.

The previous sections described models for improving software development and
maintenance processes. The next section considers the references and standards for
improving processes for IT operations and infrastructure (also known as IT services).

138 Chapter 4 Software Engineering Standards and Models

4.7.3 ITIL Framework and ISO/IEC 20000

The ITIL framework was created in Great Britain based on good management prac-
tices for computer services. It consists of a set of five books providing advice and
recommendations in order to offer quality service to IT service users. It should be
pointed out that IT services are typically responsible for ensuring that the infrastruc-
tures are effective and running (backup copies, recovery, computer administration,
telecommunications, and production data). The ITIL books systematically cover all
aspects of the computer operations in a company while at the same time not claiming
to have all the answers.

The list of guides illustrated in Figure 4.11 is:

– strategy;

– design;

– transition;

– operation;

– continuous improvement.

Support processes described in the ITIL are focused on daily operations. Their
main goals are to resolve the problems when they arise or to prevent them from hap-
pening when there is a change in the computer environment or in the way the orga-
nization does things.

ITIL describes the support center function and the following five processes:

– Incident management

– Problem management

– Configuration management

– Change management

– Commissioning management

Service strategy

Service design

Service transition

Service operation

Continual
service
improvement

Figure 4.11 The main ITIL guides.

4.7 Other Quality Models, Standards, References, and Processes 139

Service operation processes focus more on longer term management than support
processes do. The main objective is to ensure that the IT infrastructure meets the
business requirements of the organization. ITIL describes the following five processes
for service operation:

– Service level management

– Financial management of IT services

– Capacity management

– IT service continuity management

– Availability management

ITIL user group in the USA http://www.itsmfusa.org/

ITIL is therefore a compendium of good practices and a compilation of descrip-
tions of business processes that allow us to benefit from the experience of many orga-
nizations. It does not contain any implementation guidelines. ITIL is based on the
sharing of operational experiences in IT.

Given the major recognition of ITIL worldwide, an international standard based
on ITIL came into being: ISO/IEC 20000-1 [ISO 11h]. The principles of ITIL were
successfully conveyed to many companies of all sizes and from all sectors of activity.
The three main objectives are:

– to align computer services with the current and future needs of the company
and its clients;

– to improve the quality of computer services provided;

– to reduce the long-term cost of service provision.

Just like the CMMI and S3m references, ITIL is a process-based approach
founded on the principle of continuous improvement of the Deming Cycle: PDCA.

In the 1980s, the British government wanted to improve efficacy and reduce IT
costs in public companies. Initially this meant developing a universal method that
could be applied to all public organizations. The project, which was initiated in 1986,
really took off in 1988. The conclusions of the study quickly led to the definition
of general principles and the development of best practices. These results were also
applicable to the private sector. Work groups were struck, bringing together opera-
tional managers, independent experts, consultants, and trainers from public organi-
zations and from the private sector. Private companies that participated and accepted

let &hbox {char '046}http://www.itsmfusa.org/
http://www.itsmfusa.org/

140 Chapter 4 Software Engineering Standards and Models

to have their work methods studied by competing companies ensured the objectivity
of the conclusions drawn, and at the same time, prevented any risk of being influ-
enced by proprietary technologies or systems. ITIL places service at the center of
information systems management. This principle was highly innovative in 1980 and
promoted the notion of the client of information systems management. In 1989, 10
books were published in a first version of ITIL. The areas covered by this version
were the processes of Service Support and Service Delivery. Over 30 books have
been produced since, but an update between 2000 and 2011 has reduced the number
to five books today.

4.7.3.1 Managing IT Services

The definition of a service, when used in the computing context, is as an organiza-
tional unit of the company similar to the accounting department, in that it supports the
organization. This concept is also linked to the fact that information systems render
services to users; services such as email, desktop support, and others.

ITIL’s philosophy is based on the following fundamental concepts:

– taking into account the client’s expectations regarding implementing computer
services;

– the life cycle of computer projects must incorporate the different aspects of
computer services management from the start;

– the implementation of interdependent ITIL processes to ensure service quality;

– the implementation of a way of measuring this quality from the user’s point of
view;

– the importance of communication between the computer department and the
rest of the company;

– ITIL is flexible enough and must remain so in order to adapt to all organiza-
tions.

The main subjects handled under ITIL are:

– user support, which includes the management of incidents and is an extension
of the concept of a Helpdesk;

– provision of services which involves managing processes that are dedicated to
the daily operations of IT (cost control, management of service levels);

– management of the production environment infrastructure which involves
implementing the means for network management and production tools
(scheduling, backup, and monitoring);

– application management which consists of managing the support of an opera-
tional program;

– security management (confidentiality, data integrity, data availability, etc.) of
the SI (security process).

4.7 Other Quality Models, Standards, References, and Processes 141

Therefore, based on these guidelines, we can help define the processes for IT
infrastructure and IT operations groups.

4.7.3.2 ISO/IEC 20000 Standard

The ISO/IEC 20000 standard is the first ISO standard dedicated to managing IT ser-
vices. Inspired by the former British standard BSI 15000, which is based on ITIL, it
was initially published on November 10, 2005, by the ISO. The main contribution of
ISO 20000 is an international consensus on ITIL content.

As we show in Figure 4.12, this standard has two parts. The first part, ISO 20000-
1 [ISO 11h] represents the certifiable part of the standard. It defines the IT service
management requirements. These requirements are:

– specifications for service management;

– planning and implementing service management;

– planning and implementation of new services;

– service delivery process;

– relationship management;

– resolution management;

– control management;

– production management.

Design and transition of new or changed services

Service management system

Management responsibility

Establish the SMS

Service delivery process

Control processes

Capacity management
service continuity &
availability management

Service level management
service reporting

Governance of third parties
documentation management
resource management

Configuration management
Change management

Release and deployment management

Resolution processes Relationship processes
Incident and service request

management
problem management

Business relationship
management

supplier management

Information security
management, Budgeting
& accounting for services

Figure 4.12 Processes of ISO 20000 service management system [ISO 11h].
Source: Standards Council of Canada.

142 Chapter 4 Software Engineering Standards and Models

The next section introduces the reference for exemplary practices in IT gover-
nance. This guide is used by internal auditors specialized in IT in order to evaluate
the quality of controls set up in an organization.

4.7.4 CobiT Process

CobiT [COB 12] is a repository of best practices for IT governance established by
ISACA (IT auditors). Oriented on auditing and governance assessment information
systems, CobiT provides risk analysis and assessment of the effectiveness of internal
controls. This repository of best practices tries to cover several concepts such as the
analysis of business processes, technical aspects of IT, control needs in information
technology, and risk management.

The CobiT process ensures that technological resources are well aligned with
the company’s fundamental objectives. It helps to achieve the right level of control
to exercise on IT. This process is harmonized with the ITIL reference, the PMBOK®

Guide from the Project Management Institute [PMI 13] as well as the ISO 27001 and
ISO 27002 standards.

CobiT version 5 covers 34 generic guidance processes and 318 control objectives
divided into four process domains:

– planning and organization;

– acquisition and implementation;

– distribution and support;

– monitoring and surveillance.

The framework consists of checklists covering the four process domains, with
34 general control objectives and 302 detailed control objectives. The “planning and
organization” domain has eleven goals covering everything related to strategy and
tactics. These objectives identify means for IT to contribute most effectively to the
achievement of the business goals of the company. The “acquisition and implemen-
tation” domain covers six goals for the achievement of the IT strategy: the iden-
tification, acquisition, development and implementation of IT solutions and their
integration into business processes. The “distribution and support” domain consid-
ers thirteen goals, grouping the delivery of IT services required, that is, the oper-
ation, security, emergency plans, and training. The “monitoring and surveillance”
domain has four objectives that allow management to assess the quality and com-
pliance of process control requirements. The implementation tools include a pre-
sentation of cases where companies have implemented processes quickly and suc-
cessfully using the CobiT methodology. These examples are therefore closely linked
to business objectives while focusing particular attention on IT. This will reassure
management, standardize work processes, and guarantee the security and controls of
IT services.

4.7 Other Quality Models, Standards, References, and Processes 143

The CobiT management section of the guide focuses on several aspects: the per-
formance measurement and control of the IT profile and awareness of technological
risks. This document provides the key indicator objectives, the key performance indi-
cators, key success factors, and the maturity model. The maturity model evaluates the
achievement of one or more general objectives of the process on a scale of 0–5:

– 0: non-existent;

– 1: existing but unorganized (initialized on an ad hoc basis);

– 2: renewable;

– 3: defined;

– 4: managed;

– 5: optimized.

The audit guideline allows an organization to evaluate and justify the risks and
shortcomings of general and detailed objectives. Then, once this step is completed,
corrective actions can be implemented. This audit guideline respects four principles:
developing an in-depth understanding, evaluating controls, verifying compliance, and
justifying the risk of not attaining the control objectives.

The next section presents information security standards.

4.7.5 ISO/IEC 27000 Family of Standards for
Information Security

The ISO 17799 standard [ISO 05d] initially published in December 2000 by ISO
introduces a code of good practices for information security management. The second
edition of this standard was published in June 2005, and then obtained a new reference
number in July 2007. This standard is now known as ISO/IEC 27002 [ISO 05c].

The ISO 27002 standard comprises 133 practical steps to be used by anyone
in charge of implementing or maintaining an ISMS. Information security is defined
within the standard as the “preservation of confidentiality, integrity and availability
of information.”

This standard is not mandatory for companies. However, it may be required under
a contract: a service provider could then agree to respect the standardized practices
with a client.

The ISO 27002 standard is made up of 11 main sections, which cover security
management as well as its strategic and operational aspects. Each section makes up
a chapter of the standard:

– security policy;

– information security organization;

– asset management;

– security related to human resources;

144 Chapter 4 Software Engineering Standards and Models

ISO 27000 - Overview and vocabulary

ISO 27001 - ISMS Requirements
ISO 27006 - Requirements for bodies
providing audit and certification

ISO 27002 - Code of practice for ISM ISO 27007 - Guidelines for information
security management systems auditing

ISO 27005 - Information security
risk management

ISO 27003 - ISMS Implementation
guidelines

ISO 27004 - Measurement

Figure 4.13 Family of ISO 27000 Standards [ISO 05c].
Source: Standards Council of Canada.

– physical and environmental security;

– communications and operations management;

– access control;

– acquisition, development, and maintenance of information systems;

– incident management related to information security;

– activity continuity management;

– legal and regulatory compliance.

The chapters in the standard specify the objectives to reach and list practices that
allow for the fulfillment of these objectives. The standard does not provide detailed
practices, since each organization is supposed to carry out an evaluation of its own
risks in order to determine its needs before choosing the practices that are appropriate
in each of the possible cases.

This standard is based on the ISO 27000 family of standards as shown in the
Figure 4.13.

Note that the ISO 20000 standard, based on ITIL, connects directly to the ISO
27001 guideline concerning information security.

The next section presents the ISO/IEC 29110 standard and guides that have been
developed specifically for small organizations that develop software or systems.

4.7.6 ISO/IEC 29110 Standards and Guides for Very
Small Entities

Worldwide there are numerous very small entities (VSEs), namely enterprises, orga-
nizations (e.g., public organizations and not-for profit organizations), departments or

4.7 Other Quality Models, Standards, References, and Processes 145

projects with up to 25 people. For example, in Europe more than 92.2% of compa-
nies have between 1 and 9 employees and only 6.5% of firms have between 10 and
49 employees [MOL 13]. In the US, about 95% of companies have 10 employees or
less [USC 16]. In Canada, nearly 80% of software companies in the Montreal region
have 25 or fewer employees, and 50% of companies have 10 employees or less [GAU
04]. In Brazil, small businesses represent approximately 70% of the total number of
companies [ANA 04]. Lastly, in Northern Ireland [MCF 03], a survey showed that
66% of organizations employ fewer than 20 people.

Unfortunately, according to surveys and studies carried out, it is clear that the
ISO standards were not developed for VSEs, that they do not meet their needs, and
therefore they are difficult to apply in such contexts. In order to help VSEs, an interna-
tional standardization project developed a set of ISO/IEC 29110 standards and guides
[ISO 16f]. ISO 29110 standards were developed by taking relevant information for
VSEs from existing standards, such as ISO 12207 and ISO 15289. This “assemblage”
is called a profile. We will briefly introduce ISO 15289 at the end of this chapter.

In 2005, Professor Laporte was appointed as project editor of the ISO 29110 stan-
dards and guides. Since 2005, the working group has developed a set of ISO 29110
standards and guides to help VSEs that develop software, systems involving hard-
ware and software or who provide maintenance services to their clients. The interest
of several countries was such that several ISO 29110 documents have been translated
into Czech, French, German, Japanese, Portuguese, Spanish. Some countries, such
as Brazil, Japan and Peru, have adopted ISO 29110 as a national standard.

4.7.6.1 ISO 29110 Set of Profiles

The essential characteristic of organizations covered by ISO/IEC 29110 standards
is size. However, we know that there are other aspects and characteristics of VSEs
that may impact the preparation of profiles, such as the business model, situational
factors like the application domain (e.g., medical), uncertainty, criticality, and risk
levels. The creation of a profile for each possible combination of characteristics
presented above would have resulted in a large and unmanageable number of pro-
files. Therefore, the profiles were designed so as to be applicable to more than one
category. A profile group is a collection of profiles that are related either by pro-
cess composition (e.g., activities, tasks) or by capacity level, or both [ISO 16f].
For example, the generic profile group was defined as applicable to VSEs that do
not develop critical software or critical systems. Critical systems or software are
systems or software having the potential for serious impact on the users or envi-
ronment, due to factors including safety, performance, and security [ISO 16f]. The
generic profile group is a roadmap made up of four profiles (Entry, Basic, Interme-
diate, and Advanced) providing a progressive approach in order to satisfy the great-
est amount of VSEs. The main characteristics of these four profiles are described in
Table 4.4.

146 Chapter 4 Software Engineering Standards and Models

Table 4.4 VSEs Targeted by Generic Profiles [ISO 16f]

Title of profile VSEs targeted by each profile

Entry This profile is for VSEs working on small projects (e.g., a project of up to
six person-months) and for start-ups.

Basic This profile is for VSEs developing only one project at a time with a single
team.

Intermediate This profile is for VSEs involved in the simultaneous development of more
than one project with more than one team.

Advanced This profile is for VSEs wishing to significantly improve the management
of their business and their competitiveness.

Table 4.5 illustrates the documents that have been developed and the intended
recipients. Technical reports are marked “TR” (Technical Report) in their titles
whereas the other documents are standards [ISO 16f]:

– ISO/IEC TR 29110-1 [ISO 16f], entitled “Overview,” defines commonly used
terminology in all documents of VSE profiles. It presents the process, life cycle
concepts, and standards as well as all documents constituting the ISO/IEC
29110. It also describes the characteristics and needs of a VSE, and precisely
why profiles, documents, standards, and guidelines have been developed for
the VSE.

Table 4.5 ISO 29110 Documents and their Targeted Recipients [ISO 16f]

ISO/IEC
29110 Title Target

Part 1 Overview The VSE and their customers,
evaluators, standards developers,
vendors of tools and methodologies.

Part 2 Framework for profile preparation Standards developers, vendors of tools
and methodologies. This document is
not intended for VSEs.

Part 3 Certification and Assessment Guide The VSE and their customers,
assessors, accreditation bodies.

Part 4 Profile Specifications The VSE, standards developers,
vendors of tools and methodologies.

Part 5 Management and Engineering and
Service Delivery Guides

The VSE and their customers.

4.7 Other Quality Models, Standards, References, and Processes 147

– ISO/IEC 29110-2-1, entitled “Framework for profile preparation,” presents
the concepts of engineering profiles of systems and software for the VSE. It
explains the logic behind the definition and application profiles. The document
also specifies the elements common to all standardized profiles (structure, con-
formity assessment) of the ISO/IEC 29110.

– ISO/IEC 29110-3, entitled “Certification and Assessment Guidelines,” sets
guidelines for the evaluation of the process and the compliance requirements
necessary to achieve the objective of the profiles defined for VSEs. The report
also contains information which can be useful for developers of methods and
assessment tools. ISO/IEC TR 29110-3 is for those who have a direct relation
to the assessment process, for example, the assessor and the person requesting
the evaluation, which need guidance to ensure the requirements for performing
an evaluation are met.

– ISO/IEC 29110-4-m, entitled “Profile Specifications,” provides the specifica-
tions for all profiles in a profile group based on subsets of relevant standards.

– ISO/IEC 29110-5-m-n provides management and engineering and service
delivery guides for the profiles within the generic profile group.

When a new profile is required, only parts 4 and 5 of ISO 29110 are developed
without affecting other documents. To facilitate the adoption of ISO 29110 by a large
number of VSEs, Working Group 24, which was mandated to develop the ISO 29110,
negotiated that the ISO technical reports be available for free.

Technical Reports for the ISO 29110

Technical reports of ISO 29110 are available on the ISO website at the following address:
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

4.7.6.2 ISO 29110 Software Basic Profile

The software basic profile is made up of two processes: the project management pro-
cess and the software implementation process. The goal of the project management
process is to establish a systematic way to carry out the tasks of implementing the
software project which will meet the project objectives with regard to quality, sched-
ule, and cost. The purpose of the software implementation process is the systematic
performance of the analysis, design, construction, integration, and tests for new or
modified software products according to the specified requirements.

let &hbox {char '046}http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

148 Chapter 4 Software Engineering Standards and Models

Figure 4.14 Management and implementation processes for the software Basic profile [LAP 16a].

Figure 4.14 shows the project management process and the software imple-
mentation process and their activities. Activities consist of tasks. The input to
the project management process is a document entitled “Statement of Work
(SOW),” the output of the implementation process is the set of deliverables (e.g.,
documentation, code) that are defined early in the project and called software
configuration.

The management and engineering guide of the ISO 29110 software Basic profile
is presented next. Remember that a standard describes “what to do”, while manage-
ment and engineering guides describe “how to do it”.

4.7.6.2.1 Management Processes for the Software Basic Profile The
goal of the project management process is to establish a systematic way to carry out
the tasks of implementing the software project which will meet the project objectives
with regard to quality, schedule and cost.

The management process, as illustrated in Figure 4.15, uses the SOW to develop
the project plan. Assessment and control tasks for this process will use the project
plan to assess project progress. Steps are taken, if necessary, either to eliminate
gaps with the project plan or to incorporate changes into the plan. Project closure
activities provide the deliverables that are produced during the implementation pro-
cess to the client for their approval so as to officially close the project. A project
repository is established to save work products and control their versions during the
project.

The project management process includes four activities that are broken down
into 26 tasks.

4.7.6.2.2 Software Implementation Process for the Basic Profile The
purpose of the software implementation process is the systematic performance of

4.7 Other Quality Models, Standards, References, and Processes 149

Project
planning

Statement of work

Project
assessment
and control

Project plan
execution

Project closure

Verification results

Meeting record Project repository

Project plan

Project repository
backup

Meeting record

Progress status
recordCorrection register

Acceptance record
Software

configuration

Change request

Figure 4.15 Activities for the software Basic profile management process [ISO 11e].
Source: Standards Council of Canada.

the analysis, design, construction, integration, and tests for new or modified software
products according to the specified requirements. Carrying out the implementation
process, as illustrated in Figure 4.16, is controlled by the project plan. The project
plan guides the analysis of software requirements, detailed architecture and design,
construction and integration of software, tests and delivery activities for the deliv-
erables. To eliminate the defects in a product, verification and validation activities
as well as test tasks are included in this process’s activities. The client provides a
SOW as input to the project management process and receives the set of deliverables
initially identified in the project plan as the result of the implementation process.

150 Chapter 4 Software Engineering Standards and Models

Software
implementation

initiation

Software
requirements

analysis

Software
architectural
and detailed

design

Software
construction

Software
integration and

tests

Product
delivery

Project
plan

Validation
results

Verification
results

Requirements
specification

Traceability
record

Software
design

Software
components

Test report

Maintenance
documentation

Product
operation guide

Software user
documentation

Test cases and
test procedures

Software
configuration

Project
repository

Software

Change
request

Figure 4.16 Software implementation activities for the Basic profile [ISO 11e].
Source: Standards Council of Canada.

4.7 Other Quality Models, Standards, References, and Processes 151

Table 4.6 Description of One Task of the Requirements Analysis Activity [ISO 11e]

Roles Tasks
Input work
products

Output work
products

CUS
AN

SI.2.4 Validate and obtain approval
of the Requirements Specifications

Validate that requirements
specification satisfies needs and
agreed upon expectations, including
the user interface usability. The
results found are documented in a
validation results and corrections
are made until the document is
approved by the CUS.

Requirements
Specification
[verified]

Validation
Results

Requirements
Specification
[validated]

The implementation process, as shown in Figure 4.16, includes six activities that
are broken down into 41 tasks. To illustrate how management and engineering guides
facilitate the implementation of ISO 29110 in a VSE, Table 4.6 provides an example
of the requirements analysis task (SI.2.4-Validate and obtain approval of the require-
ments specification). The left column lists the roles involved in this task: the Analyst
(AN) and the Customer (CUS). A second column describes the task as well as some
additional information to help execute the task and a third column describes the input
work product required for task execution as well as its status (e.g., verified). The last
column shows the output work products and their status resulting from the execution
of the task.

Table 4.7 shows an example of a document, a change request, and the content pro-
posed by the ISO 29110 management and engineering guide. Note that the guide does
not impose specific content by stating that a document “may,” not “shall,” include the
following items, but provides information items that can be grouped. The right-hand
column shows the source who requested the document. In this example, a change
request is drafted by the client, the development team or by project management. We
also note at the end of the description, the applicable status of this document.

4.7.6.3 The Development of Deployment Packages

Although the ISO working group created a management and engineering guide, many
VSEs do not have the resources to readily use the two processes described. Therefore,
Professor Laporte, as the ISO 29110 project editor, recommended to the delegates for
Working Group 24 during a meeting in Moscow in 2007, the development of material
that can be used “as is” by VSEs [LAP 08a]. He coordinated the development of a set
of documents called the Deployment Package (DP), based on the management and
engineering guides.

152 Chapter 4 Software Engineering Standards and Models

Table 4.7 Description of the Content of a Document [ISO 11e]

Name Description Source

Change
request

Identifies a Software, or documentation problem or
desired improvement, and requests modifications.

It may have the following characteristics:
– Identifies purpose of change

– Identifies request status

– Identifies requester contact information

– Impacted system(s)

– Impact to operations of existing system(s) defined

– Impact to associated documentation defined

– Criticality of the request, date needed

The applicable statuses are: initiated, evaluated, and
accepted.

Customer

Project
management

Software
implementation

A DP is a set of artifacts that facilitate and accelerate the implementation of the
ISO 29110 standard in VSEs by providing them with ready-to-use processes. The
table of contents for the package is described in Table 4.8. Note that the tasks from

Table 4.8 Table of Contents of a DP [LAP 08a]

1. Technical description
Purpose of this document
Why is this topic important?

2. Relationships with ISO/IEC 29110

3. Definitions

4. Overview of processes, activities, tasks, roles, and products

5. Description of processes, activities, tasks, steps, roles, and products
Role description
Product description
Artifact description

6. Template(s)

7. Example(s)

8. Checklist(s)

9. Tool(s)

10. References to other standards and models (e.g., ISO 9001, ISO/IEC 12207, CMMI)

11. References

12. Evaluation form

4.7 Other Quality Models, Standards, References, and Processes 153

Requirements
analysis

Version
control

Integration
and
tests

Project
management

Architecture
and

detailed design
Product
delivery

Self-assessment

Construction
and

unit testing

Verification
and

validation

Figure 4.17 DPs for the software Basic profile [LAP 08].

the management and engineering guides were broken down into steps to help the VSE
concretely implement the standard.

Figure 4.17 shows the DPs that have been developed for the software Basic pro-
file.

These DPs are available for free in English, French, and Spanish on the Web
(www.sqabook.org). This site also provides access to templates, checklists, and exam-
ples of the implementation of ISO 29110, such as the example provided below.

4.7.6.4 Example of the Implementation of the Software Basic Profile

Following is a brief description of the implementation of the ISO 29110 basic profile
for BitPerfect Inc.—a start-up of four persons located in Lima, Peru [GAR 15].

Peruvian Start-Up VSE - BitPerfect (Adapted from [GAR 15])

The VSE had used agile practices for its first development projects (e.g., Scrum, test
driven development, continuous integration). The basic profile of ISO 29110 had been
tailored to agile practices already in use. The new process had been successfully applied
to a project for a client of the VSE: software that facilitates communication between
clients and judicial counselors to the second largest insurance company in Peru.

Project management and software development of the insurance company project
took about 900 hours. The table below shows the effort for prevention, execution, evalu-
ation, and correction.

let &hbox {char '046}www.sqabook.org
http://www.sqabook.org

154 Chapter 4 Software Engineering Standards and Models

Development phase
Prevention
(hours)

Execution
(hours)

Evaluation
(hours)

Correction
(hours)

Preparing the environment
(e.g., server)

14

Developing the project plan 15 3 7
Implementation and project

control
108

Implementation (sprints) 90
Assessment and control (sprint

review)
18

Software specification 107 28 58
Statement of work 12 3 7
Specification of use cases 95 25 51
Architecture design 35 18 14
Development of the test plan 45 8 11
Coding and testing 253 70 62
Documentation of maintenance

and operating guide
14 5 7

Software implementation 6
Project closure 2
Total (hours) 14 585 124 159

Efforts for prevention, execution, evaluation, and correction [GAR 15]

The percentage of effort invested in the correction of defects (i.e., rework) was only 18%
(159 hours/882 hours) for the entire project. This percentage is similar to the performance
of a CMM level 3 maturity level. The table below shows the percentage of correction
efforts by CMM level of maturity.

Maturity Levels of the CMM Model and Correction Effort [DIA 02])

CMM maturity level % Correction effort

2 23.2%
3 14.3%
4 9.5%
5 6.8%

It should be noted that this project was the first for which the VSE used the new
ISO 29110 based process in a software development project. The correction percentage
reflects the learning curve associated with the new process and the new documents to
produce.

This Peruvian VSE was subsequently audited by an accredited auditor from Brazil.
An ISO 29110 compliance audit was completed and a certificate of compliance for the

4.7 Other Quality Models, Standards, References, and Processes 155

Basic profile was issued by the Brazilian standards agency. ISO/IEC 29110 certification
has facilitated access to new customers and larger projects. The certificate obtained by
the VSE is recognized by the member countries of the International Accreditation Forum
(IAF). In 2016, the Peruvian VSE employed more than 23 people.

The certification process for the Peruvian VSE will be presented in the chapter
on audits.

4.7.7 ISO/IEC 29110 Standards for VSEs
Developing Systems

Since a large number of VSEs develop systems that include hardware and software,
members of the SC7 countries mandated Working Group 24 to develop a set of doc-
uments similar to those already created for the development of software: a roadmap
consisting of a set of four profiles (Entry, Basic, Intermediate, and Advanced). The
system development and software development profiles are similar since the strat-
egy was to develop the system profiles using, as the foundation, the software profiles
already published.

Figure 4.18 shows the processes and activities for the systems engineering Basic
profile. Since this is based on the software Basic profile, there are similarities with

System definition and
realization process

System definition and
realization initiation

System requirements
engineering

System architectural
design

System construction

System integration,
verification and

validation

Product delivery

Product
Statement
of work

Acquirer

VSE’s management

Project management process

Project assessment
and control

Project closure
Project plan
execution

Project planning

Figure 4.18 Processes and activities for the Basic profile for the development of systems [ISO 16f].

156 Chapter 4 Software Engineering Standards and Models

the software Basic profile presented above:

– a client, called acquirer, presents a SOW for a VSE;

– a project management process that includes similar activities as the project
management process of the software Basic profile. Some tasks were added to
the profile for systems engineering such as the management of the purchase of
hardware components.

– a technical process, referred to as System Definition and Realization process,
has activities that are similar to the software implementation process. Several
tasks were added to the systems engineering profile. It is during the execution
of the activity entitled “Construction of the system” that the hardware compo-
nents are purchased or manufactured by the VSE. It is also at this point that
software components are developed. Next, during the system integration activ-
ity, software and hardware components are integrated, the system is verified
and validated. The ISO 29110 systems engineering guide suggests that a VSE
uses the software Basic profile for the development of the software components
of the system.

The system and software management and engineering guides are freely avail-
able from ISO in French and English. A version in German is also available on
the Web.

4.8 SPECIFIC STANDARDS FOR AN
APPLICATION DOMAIN

In this section, we provide examples of standards that are specific to an application
domain, such as aerospace and railways, to highlight the fact that certain fields com-
prising critical systems have developed their own standards. Unlike ISO’s software
engineering standards, which are developed by representatives of member countries,
the standards described below have been developed by the organizations involved
in a specific field (e.g., aerospace companies and aviation authorities). One notable
example is the CobiT guide [COB 12] that is used by internal auditors to audit the
information systems organizations.

4.8.1 DO-178 and ED-12 Guidance for Airborne Systems

The development of DO-178 “Software Considerations in Airborne Systems and
Equipment Certification,” was initiated in 1980 by the Radio Technical Commission
for Aeronautics (RTCA). At the same time, the European Organisation for Civil
Aviation (EUROCAE) had also developed a similar document. Later, the two orga-
nizations decided to develop a common guidance. In 1982, EUROCAE published
ED-12 with technical content identical to DO-178. As stated in DO-178C, since

4.8 Specific Standards for an Application Domain 157

1992, the aviation industry and certification authorities around the world have used
the considerations in DO-178B/ED-12B as an acceptable means of compliance for
software approval in the certification of airborne systems and equipment. The latest
version of these two documents was published in 2011 [EUR 11, RTC 11].

Their purpose is to provide guidance for the production of software for airborne
systems and equipment. These systems must provide a high level of safety that com-
plies with airworthiness requirements.

The reader may wonder why this document is called guidance and not a standard.
This is the explanation extracted from DO-178 [RTC 11]: “This document recognizes
that the guidance herein is not mandated by law, but represents a consensus of the avi-
ation community. It also recognizes that alternative methods to the methods described
herein may be available to the applicant. For these reasons, the use of words such as
‘shall’ and ‘must’ is avoided.”

However, DO-178 provides some text that transforms this guidance to a de facto
standard for that industry [RTC 11]: “If an applicant adopts this document as a means
of compliance, the applicant should satisfy all applicable objectives. This document
should apply to the applicant and any of its suppliers, who are involved with any of
the software life cycle processes or the outputs of those processes described herein.
The applicant is responsible for oversight of all of its suppliers.”

Certification

Legal recognition by the certification authority that a product, service, organization, or
person complies with the requirements.

Such certification comprises the activity of technically checking the product, service,
organization, or person and the formal recognition of compliance with the applicable
requirements by issue of a certificate, license, approval, or other documents as required
by national laws and procedures. In particular, certification of a product involves:

a) the process of assessing the design of a product to ensure that it complies with
a set of requirements applicable to that type of product so as to demonstrate an
acceptable level of safety;

b) the process of assessing an individual product to ensure that it conforms with the
certified type design;

c) the issuance of a certificate required by national laws to declare that compliance
or conformity has been found with requirements in accordance with items (a) or
(b) above.

DO-178 [RTC 11]

158 Chapter 4 Software Engineering Standards and Models

The purpose of this guidance includes [RTC 11]:

– objectives for software life cycle processes;

– activities that provide a means for satisfying those objectives;

– descriptions of evidence in the form of life cycle data that indicate that the
objectives have been satisfied.

A system safety assessment determines the software level of the software com-
ponents of a system. The software level may even be specified in the system require-
ments. The DO-178 divides software into five levels [RTC 11]:

1) Level A: Software whose anomalous behavior, as shown by the system safety
assessment process, would cause or contribute to a failure of system function
resulting in a catastrophic failure condition for the aircraft.

2) Level B: Software whose anomalous behavior, as shown by the system safety
assessment process, would cause or contribute to a failure of system function
resulting in a hazardous failure condition for the aircraft.

3) Level C: Software whose anomalous behavior, as shown by the system safety
assessment process, would cause or contribute to a failure of system function
resulting in a major failure condition for the aircraft.

4) Level D: Software whose anomalous behavior, as shown by the system safety
assessment process, would cause or contribute to a failure of system function
resulting in a minor failure condition for the aircraft.

5) Level E: Software whose anomalous behavior, as shown by the system safety
assessment process, would cause or contribute to a failure of system function
with no effect on aircraft operational capability or pilot workload. If a soft-
ware component is determined to be Level E and this is confirmed by the cer-
tification authority, no further guidance contained in this document applies.

RTCA

RTCA, Incorporated is a not-for-profit corporation formed to advance the art and science
of aviation and aviation electronic systems for the benefit of the public. The organization’s
recommendations are often used as the basis for government and private sector decisions
as well as the foundation for many Federal Aviation Administration Technical Standard
Orders.

www.rtca.org

EUROCAE

The European Organisation for Civil Aviation Equipment is a non-profit organisation
dedicated to aviation standardisation.

www.eurocae.net

let &hbox {char '046}www.rtca.org
http://www.rtca.org
let &hbox {char '046}www.eurocae.net
http://www.eurocae.net

4.8 Specific Standards for an Application Domain 159

4.8.2 EN 50128 Standard for Railway Applications

The EN 50128 standard describes the application domain in the following way [CEN
01]: by specifying the procedures and technical requirements applicable to the devel-
opment of programmable electronic systems used in railway control and protection
applications. It is meant to be used in any field having safety implications. It applies
to all software used in developing and implementing railway control and protection
systems, including application programming, operating systems, support tools, and
micro-programming. It also focuses on the requirements applicable to the systems
configured using application data.

The standard was developed for the following reasons [CEN 01]:

– To define a process for the specification and demonstration of dependability
requirements for the railway industry;

– To foster an understanding and common approach to managing dependability;

– To provide the railway authorities and industry with a process that allows for a
coherent management of reliability, availability, maintainability, and depend-
ability.

The EN 50128 standard introduces five software safety integrity levels (SWSIL)
where each level is associated with a degree of risk when using a software system.
Level 0 is assigned to software that is non-safety-related, whereas level 4 means
a very high risk. A special feature of this standard is that it imposes an organiza-
tional structure on organizations that develop risky software, that is, software with
safety issues. Figure 4.19 illustrates the different organizational structures based on
the SWSIL.

The standard describes the sharing of roles and responsibilities of stakeholders.
For level 0, there is no constraint, the designer/implementer, verifier, and validator
can all be the same person.

For SWSIL levels 1 and 2, the verifier and validator can be the same person,
but they cannot be the designer/implementer. However, the designer/implementer,
verifier, and validator can all report through the project manager. At SWSIL levels 3
and 4, there are two acceptable arrangements:

– The verifier and the validator can be one and the same person, but they
must not also be the designer/implementer. In addition, the verifier and val-
idator cannot report to the project manager, as the designer/implementer
does, and they must have the authority to prevent a product from being
released.

– The designer/implementer, verifier and validator must all be different peo-
ple. The designer/implementer and verifier can report to the project manager,
whereas the validator cannot. The validator must have the authority to prevent
a product from being released.

160 Chapter 4 Software Engineering Standards and Models

DI, VER, VAL

DI VER, VAL

ASSR

ASSR

PRJ MGR

DI VER, VAL

ASSR

ASSRPRJ MGR

DI VER VAL

Key : =Can be the same person

= Can be the same company

DI = Designer/Implementor

VER = Verif ier VAL = Validator

ASSR = Assessor PRJ MGR = Project manager

0

1 & 2

3 & 4

or

3 & 4

Figure 4.19 Independence versus SWSIL [CEN 01].

Moreover, in this standard, there are requirements about using or not using cer-
tain development techniques. The classification table has five levels, from mandatory
to not recommended and appears in Table 4.9.

Table 4.10 illustrates the classification of static analysis techniques for SWSIL
from 0 to 4. Here, we see the requirement for performing design reviews is “HR” for
all levels of criticality.

In Table 4.11, we list requirements made as to whether or not to use certain
programming languages, such as C or C++ (without restriction), for the five criticality
levels.

4.8 Specific Standards for an Application Domain 161

Table 4.9 Example of a Technique Classification Table (Translated from [CEN 01])

Classification Explanation

The use of a technique is mandatory (M).
The technique is highly recommended (HR)

for this safety integrity level.
If this technique or measure is not used then

the rationale behind not using it should be
detailed in the SQAP or in another
document referenced by the SQAP.

The technique or measure is recommended
(R) for this safety integrity level.

The technique or measure has no
recommendation (-) for or against being
used.

The technique or measure is positively not
recommended (NR) for this safety
integrity level.

If this technique or measure is used then the
rationale behind using it should be
detailed in the SQAP or in another
document referenced by the SQAP.

Table 4.10 Description of Classification of Static Analysis Techniques [CEN 01]

Technique
SW
IL 0

SW
IL 1

SW
IL 2

SW
IL 3

SW
IL 4

Boundary value analysis - R R HR HR
Checklists - R R R R
Data flow analysis - HR HR HR HR
Fagan inspections - R R HR HR
Walk-through/design reviews HR HR HR HR HR

Table 4.11 Description of Classification of Programming Languages [CEN 01]

Technique
SW
IL 0

SW
IL 1

SW
IL 2

SW
IL 3

SW
IL 4

Ada R HR HR R R
C or C++ (unrestricted) R - - NR NR
Subset of C or C++ with coding standard R R R R R

4.8.3 ISO 13485 Standard for Medical Devices

The ISO 13485 standard focuses on QA of products, customer requirements, and
various items related to the management of quality systems [ISO 16d]. This standard
specifies the requirements of a QMS that can be used by an organization for design
and development, production, installation, and related services for medical devices,

162 Chapter 4 Software Engineering Standards and Models

as well as the design, development, and supply of related services. The following
definition of medical device illustrates the wide spectrum of devices that could be
impacted by poor quality software.

Medical Device

Instrument, apparatus, implement, machine, appliance, implant, reagent for in vitro use,
software, material or other similar or related article, intended by the manufacturer to be
used, alone or in combination, for human beings, for one or more of the specific medical
purpose(s) of:

– diagnosis, prevention, monitoring, treatment or alleviation of disease;

– diagnosis, monitoring, treatment, alleviation of or compensation for an injury;

– investigation, replacement, modification, or support of the anatomy or of a physiologi-
cal process;

– supporting or sustaining life;

– control of conception;

– disinfection of medical devices;

– providing information by means of in vitro examination of specimens derived from the
human body;

and does not achieve its primary intended action by pharmacological, immunological or
metabolic means, in or on the human body, but which may be assisted in its intended
function by such means.

Note 1 to entry: Products which may be considered to be medical devices in some
jurisdictions but not in others include:

– disinfection substances;

– aids for persons with disabilities;

– devices incorporating animal and/or human tissues;

– devices for in vitro fertilization or assisted reproduction technologies.

ISO 13485 [ISO 16d]

Although this standard is independent of ISO 9001, it is based upon it. Given
that certain requirements of ISO 9001 were excluded from ISO 13485, organizations
whose QMS comply with ISO 13485 can claim compliance with the ISO 9001 stan-
dard only if their QMSs comply with all the requirements of the ISO 9001standard.
Appendix B of ISO 13485 provides correspondence between these two standards.

4.9 Standards and the SQAP 163

4.9 STANDARDS AND THE SQAP

Standards have a central place in a project’s SQAP (Software Quality Assurance
Plan). In order to conduct product and process assurance activities, the project
team as well as the SQA function need to assess the adherence of project processes
and products to the applicable agreements (e.g., contracts), regulations and laws,
organizational standards, and procedures. Effectiveness of organizational software
processes need to be constantly evaluated and improvements suggested. Problems
and non-conformance are identified and recorded. The IEEE 730 standard defines the
requirements regarding standards, practices, and conventions that must be described
in the SQAP of a project. The SQAP identifies all applicable standards, practices,
and conventions used for the project such as:

– documentation standards;

– design standards;

– coding standards;

– standards for comments;

– testing standards and practices.

Once the standards are identified and staff are trained on how to use them, SQA
has a duty to conduct process and product assurance evaluations based on organi-
zational QA policies and processes. Both process and product assurance evaluations
have to be done on all projects. Process assurance consists of the following activities
[IEE 14]:

– evaluate life cycle processes and plans for conformance;

– evaluate environments for conformance;

– evaluate subcontractor processes for conformance;

– measure processes;

– assess staff skills and knowledge.

In many organizations, the requirement of the standards mandated by a customer in an
agreement is embedded in the processes of a project before the project is started and
developers are trained on these processes.

It is up to the organization to decide if it will inform their developers about the stan-
dards that have been embedded in their processes. In the reference section of a process, an
organization usually lists the standards used, such as ISO 12207 or ISO 9001, to document
the process.

164 Chapter 4 Software Engineering Standards and Models

We have seen that organizational standards used by software and system engi-
neers are adapted locally to fit each project specificity. To ensure consistency, high
quality and reduce project risks, the SQA is asked to:

– identify the standards and procedures established by the project or organiza-
tion;

– analyze, for identified projects, the product risks, standards, and assumptions
that could impact quality and identify specific SQA activities, tasks, and out-
comes that could help determine whether those risks can be effectively miti-
gated by the project;

– determine whether the proposed product measurements are consistent with
standards and procedures established by the project.

Note that standard conformance, regulatory concerns, or customer requirements
are to be included in any tailoring for projects that use an agile methodology. As well,
the SQA cannot replace the project team’s responsibility for the product quality. The
IEEE 730 standard insists that resources and information necessary for performing
SQA are identified, made available, allocated, and used in projects. The project team
should ask the following questions, regarding standards, practices and conventions,
at the project planning stage:

– what government regulations and industry standards are applicable to this
project? Have all laws, regulations, standards, practices, conventions, and rules
been identified?

– what specific standards are applicable to this project? Have specific criteria and
standards against which all project plans are to be evaluated been identified and
shared within the project team?

– what organizational reference documents (such as standard operating pro-
cedures, coding standards, and document templates) are applicable to this
project?

– have specific criteria and standards against which software life cycle pro-
cesses (e.g., supply, development, operation, maintenance, and support pro-
cesses including QA) are to be evaluated been identified and shared with the
project team?

– what reference documents are appropriate to include in the SQAP?

– is the SQA expected to assess the project’s compliance with applicable regula-
tions, standards, organizational documents, and project reference documents?

During the project execution, the project team will have to verify:

– the project level of adherence to plans, product quality, processes (such as the
life cycle processes), and activities with regards to the applicable standards,

4.11 Further Reading 165

procedures, and requirements. Additionally, they need to keep quality records
of these activities in case of additional verification;

– that appropriate coding standards and conventions, identified during planning,
are applied;

– that the criteria, standards, and contractual requirements against which soft-
ware engineering practices, development environment, and libraries are to be
reviewed have been identified and documented;

– deviations to the SQAP are reported, authorized, and documented.

4.10 SUCCESS FACTORS

The implementation of standards into practice may be facilitated or hindered depend-
ing on the factors at play in the organization. The following text box lists a few of
these factors.

Factors that Foster Software Quality

1) Understanding the standards used;

2) Educating users about the benefits and hazards of the standards chosen;

3) Promoting standards to be used by upper management;

4) Using the right standards related to the application domain;

5) Using the standards only if they provide a benefit; otherwise, they will not be used or
be useful;

6) Adopting standards although they are not mandatory.

Factors that may Adversely Affect Software Quality

1) Using standards to the letter and not according to the essence;

2) Using too many standards.

4.11 FURTHER READING

Glazer H., Dalton J., Anderson D., Konrad M., and Shrum S. CMMI or Agile: Why Not
Embrace Both!. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
USA, 2008, 41 p.

Moore J. The Road Map to Software Engineering: A Standards-Based Guide. Wiley-IEEE
Computer Society Press, Hoboken, New Jersey, USA, 2006, 440 p.

166 Chapter 4 Software Engineering Standards and Models

Pfleeger S.L., Fenton N.E., and Page P. Evaluating software engineering standards. IEEE
Computer, vol. 27, issue 9, 1994, pp. 71–79.

4.12 EXERCISES

4.1 Name five advantages and five disadvantages of software engineering standards.

4.2 Provide five advantages and five disadvantages of the CMMI-DEV.

4.3 If an organization implements all the standards needed for the development of its soft-
ware products, is this sufficient to produce quality software?

4.4 If an organization implements all the standards needed for the development of its soft-
ware products, is this sufficient to produce software and make a profit or bring other
benefits to the organization?

4.5 Can the CMMI-DEV model be used for development in an organization with 10 devel-
opers? Explain why or why not.

4.6 Can software be developed in an environment that has adopted agile practices and the
CMMI-DEV?

4.7 What could be the benefits of using ISO 29110 for a small organization?

Chapter 5

Reviews

After studying this chapter, you will be able to:

– understand the value of different types of reviews;

– understand the personal review;

– understand the desk-check type of peer review;

– understand the reviews described in the ISO/IEC 20246 standard, the CMMI®,
and the IEEE 1028 standard;

– understand the walk-through and inspection review;

– understand the project launch review and project lessons learned review;

– understand the measures related to reviews;

– understand the usefulness of reviews for different business models;

– understand the requirements of the IEEE 730 standard regarding reviews.

5.1 INTRODUCTION

Humphrey (2005) [HUM 05] collected years of data from thousands of software engi-
neers showing that they unintentionally inject 100 defects per thousand lines of code.
He also indicates that commercial software typically includes from one to ten errors
per thousand lines of code [HUM 02]. These errors are like hidden time bombs that
will explode when certain conditions are met. We must therefore put practices in place
to identify and correct these errors at each stage of the development and maintenance
cycle. In a previous chapter, we introduced the concept of the cost of quality. The
calculation of the cost of quality is:

Quality costs = Prevention costs
+Appraisal or evaluation costs
+ Internal and external failure costs
+Warranty claims and loss of reputation costs

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

167

168 Chapter 5 Reviews

The detection cost is the cost of verification or evaluation of a product or service
during the various stages of the development process. One of the detection techniques
is conducting reviews. Another technique is conducting tests. But it must be remem-
bered that the quality of a software product begins in the first stage of the development
process, that is to say, when defining requirements and specifications. Reviews will
detect and correct errors in the early phase of development while tests will only be
used when the code is available. So we should not wait for the testing phase to begin
to look for errors. In addition, it is much cheaper to detect errors with reviews than
with testing. This does not mean we should neglect testing since it is essential for the
detection of errors that reviews cannot discover.

Unfortunately, many organizations do not perform reviews and rely on testing
alone to deliver a quality product. It often happens that, given the many problems
throughout development, the schedule and budget have been compressed to the point
that tests are often partially, if not completely, eliminated from the development or
maintenance process. In addition, it is impossible to test a large software product
completely. For example, for software that has barely 100 decisions (branches), there
are more than 184,756 possible paths to test and for software with 400 decisions,
there are 1.38E + 11 possible paths to test [HUM 08].

“A year of work experience in an environment that requires regular participation in peer
reviews is the equivalent of 3 years of work experience in an environment where you do
not use these reviews.”

Gerald Weinberg, SQTE Magazine, March 2003

In this chapter, we present reviews. We will see that there are many types of
reviews ranging from informal to formal.

Informal reviews are characterized as follows:

– There is no documented process to describe reviews and they are carried out
in many ways by different people in the organization;

– Participants’ roles are not defined;

– Reviews have no objective, such as fault detection rate;

– They are not planned, they are improvised;

– Measures, such as the number of defects, are not collected;

– The effectiveness of reviews is not monitored by management;

– There is no standard that describes them;

– No checklist is used to identify defects.

5.1 Introduction 169

Formal reviews will be discussed in this chapter as defined in the following
text box.

Review

A process or meeting during which a work product, or set of work products, is presented
to project personnel, managers, users, customers, or other interested parties for comment
or approval.

ISO 24765 [ISO 17a]
A process or meeting during which a software product, set of software products, or a
software process is presented to project personnel, managers, users, customers, user rep-
resentatives, auditors, or other interested parties for examination, comment, or approval.

IEEE 1028 [IEE 08b]

In this chapter, we present two types of review as defined in the IEEE 1028 stan-
dard [IEE 08b]: the walk-through and the inspection. Professor Laporte contributed
to the latest revision of this standard. We will also describe two reviews that are not
defined in the standard: the personal review and the desk-check. These reviews are
the least formal of all of the types of reviews. They are included here because they are
simple and inexpensive to use. They can also help organizations that do not conduct
formal reviews to understand the importance and benefits of reviews in general and
establish more formal reviews.

Peer reviews are product activity reviews conducted by colleagues during devel-
opment, maintenance, or operations in order to present alternatives, identify errors,
or discuss solutions. They are called peer reviews because managers do not partic-
ipate in this type of review. The presence of managers often creates discomfort as
participants hesitate to give opinions that could reflect badly on their colleagues and
the person who requested the review may be apprehensive of negative feedback from
his own manager.

Figure 5.1 shows the variety of reviews as well as when they can be used through-
out the software development cycle. Note the presence of phase-end reviews, docu-
ment reviews, and project reviews. These reviews are used internally or externally for
meetings with a supplier or customer.

Figure 5.2 lists objectives for reviews. It should be noted that each type of review
does not target all of these objectives simultaneously. We will consider what the objec-
tives are for each type of review in a subsequent section.

The types of reviews that should be conducted and the documents and activities to
be reviewed or audited throughout the project are usually determined in the software
quality assurance plan (SQAP) for the project, as explained by the IEEE 730 standard

170 Chapter 5 Reviews

System
specification
and design

System quality
assurance plan
(SQAP)

System
integration

and validation

Software production

Requirements
specification

Preliminary
design

Programming
(Detailed design)

(coding) (unit testing)
(integration)

Validation

Project
launch
review

End of
project
review

End of
phase
review

End of
phase
review

Internal quality

Control actions

SQAP
writing Document reviews Inspections

Metrology Audits

Project reviews

End of
phase
review

Figure 5.1 Types of reviews used during the software development cycle [CEG 90] (© 1990 –
ALSTOM Transport SA).

[IEE 14], or in the project management plan, as defined by the ISO/IEC/IEEE 16326
standard [ISO 09]. The requirements of the IEEE 730 standard will be presented at
the end of this chapter.

As illustrated in Figure 5.3, to produce a document, that is, a software prod-
uct (e.g., documentation, code, or test), source documents are usually used as inputs
to the review process. For example, to create a software architecture document, the
developer should use source material such as the system requirements document, the
software requirements, a software architecture document template, and possibly a
software architecture style guide.

A review of just the software product, for example, a requirements document, by
its author is not sufficient to detect a large number of errors. As illustrated in Figure
5.4, once the author has completed the document, the software product is compared by
his or her peers against the source documents used. At the end of the review, peers who
participated in the review will have to decide if the document produced by the author
is satisfactory as is, if significant corrections are required or if the document must be

5.1 Introduction 171

- Identify defects
- Assess / measure the quality of a document (e.g., the number of defects per page)
- Reduce the number of defects by correcting the defects identified
- Reduce the cost of preparing future documents (i.e., by learning the type of defects each developer makes,
 it is possible to reduce the number of defects injected in a new document)
- Estimate the effectiveness of a process (e.g., the percentage of fault detection)
- Estimate the efficiency of a process (e.g., the cost of detection or correction of a defect)
- Estimate the number of residual defects (i.e., defects not detected when software is delivered to customer)
- Reduce the cost of tests
- Reduce delays in delivery
- Determine the criteria for triggering a process
- Determine the completion criteria of a process
- Estimate the impacts (e.g., cost) of continuing with current plans, e.g. cost of delay, recovery,
 maintenance, or fault remediation
- Estimate the productivity and quality of organizations, teams and individuals
- Teach personnel to follow the standards and use templates
- Teach personnel how to follow technical standards
- Motivate personnel to use the organization's documentation standards
- Prompt a group to take responsibility for decisions
- Stimulate creativity and the contribution of the best ideas with reviews
- Provide rapid feedback before investing too much time and effort in certain activities
- Discuss alternatives
- Propose solutions, improvements
- Train staff
- Transfer knowledge (e.g., from a senior developer to a junior)
- Present and discuss the progress of a project
- Identify differences in specifications and standards
- Provide management with confirmation of the technical state of the project
- Determine the status of plans and schedules
- Confirm requirements and their assignment in the system to be developed

Figure 5.2 Objectives of a review.
Source: Adapted from Gilb (2008) [GIL 08] and IEEE 1028 [IEE 08b].

corrected by the author and peer reviewed again. The third option is only used when
the revised document is very important to the success of the project. As discussed
below, when an author makes many corrections to a document, it inadvertently creates
other errors. It is these errors that we hope to detect with another peer review.

The advantage of reviews is that they can be used in the first phase of a project, for
example, when requirements are documented, whereas tests can only be performed
when the code is available. For example, if we depend on tests alone and errors are
injected when writing the requirements document, these will only become apparent

Document development
activities

Source
document(s)

Software product

Standard(s)
and template(s)

Figure 5.3 Process of developing a document.

172 Chapter 5 Reviews

Review
activities

Source
document(s)

Standard(s)
and template(s)

Checklist(s)
(optional)

List of anomalies
and

decisions taken

Measure(s)

Change
request(s)

Software product to
review

Corrected
software product

Figure 5.4 Review process.

when the code is available. However, if we use reviews, then we can also detect and
correct errors during the requirements phase. Errors are much easier to find and are
less expensive to correct at this phase. Figure 5.5 compares errors detected using only
tests and using a type of review called inspections.

For illustration purposes, we used an error detection rate of 50%. Several organi-
zations have achieved higher detection rates, that is, well over 80%. This figure clearly
illustrates the importance of establishing reviews from the first phase of development.

5.2 PERSONAL REVIEW AND DESK-CHECK REVIEW

This section describes two types of reviews that are inexpensive and very easy to
perform. Personal reviews do not require the participation of additional reviewers,
while desk-check reviews require at least one other person to review the work of the
developer of a software product.

5.2.1 Personal Review

A personal review is done by the person reviewing his own software product in order
to find and fix the most defects possible. A personal review should precede any activ-
ity that uses the software product under review.

The principles of a personal review are [POM 09]:

– find and correct all defects in the software product;

– use a checklist produced from your personal data, if possible, using the type of
defects that you are already aware of;

5.2 Personal Review and Desk-Check Review 173

Activity

0

5

10

15

20

25

START REQ HLD LLD CODE UT IT ST SHIP

D
e
fe

c
ts

/K
L

O
C

Injected
Detected without Inspections

Gap

Detected with Inspections
New gap

Legend:
• REQ = requirement
• HLD = high-level architecture design
• LLD = detailed design
• CODE = coding and debugging
• UT = unit testing
• IT = integration testing
• ST = system testing
• SHIP = delivery to customer
• KLOC = thousand lines of code

Figure 5.5 Error detection during the software development life cycle [RAD 02].

– follow a structured review process;

– use measures in your review;

– use data to improve your review;

– use data to determine where and why defects were introduced and then change
your process to prevent similar defects in the future.

Checklist

A checklist is used as a memory aid. A checklist includes a list of criteria to verify the
quality of a product. It also ensures consistency and completeness in the development of
a task. An example of a checklist is a list that facilitates the classification of a defect in a
software product (e.g., an oversight, a contradiction, an omission).

174 Chapter 5 Reviews

The following practices should be followed to develop an effective and efficient
personal review [POM 09]:

– pause between the development of a software product and its review;

– examine products in hard copy rather than electronically;

– check each item on the checklist once completed;

– update the checklists periodically to adjust to your personal data;

– build and use a different checklist for each software product;

– verify complex or critical elements with an in depth analysis.

Figure 5.6 outlines the process of a personal review.
As we can see, personal reviews are very simple to understand and perform.

Since the errors made are often different for each software developer, it is much
more efficient to update a personal checklist based on errors noted in previous
reviews.

ENTRY CRITERIA
• None

INPUT
• Software product to review

ACTIVITIES
1. Print:
• Checklist for the software product to be reviewed
• Standard (if applicable)
• Software product to review
2. Review the software product, using the first item on the checklist and cross this item off when the
review of the software product is completed
3. Continue review of the software product using the next item on the checklist and repeat until all the
items in the list have been checked
4. Correct any defects identified
5. Check that each correction did not create other defects.

EXIT CRITERIA
• Corrected software product

OUTPUT
• Corrected software product

MEASURE
• Effort used to review and correct the software product measured in person-hours with an accuracy

of +/–15 minutes.

Figure 5.6 Personal review process.
Source: Adapted from Pomeroy-Huff et al. (2009) [POM 09].

5.2 Personal Review and Desk-Check Review 175

5.2.2 Desk-Check Reviews

A type of peer review that is not described in standards is the desk-check review
[WAL 96], sometimes called the Pass around [WIE 02]. It is important to explain this
type of peer review because it is inexpensive and easy to implement. It can be used to
detect anomalies, omissions, improve a product, or present alternatives. This review
is used for low-risk software products, or if the project plan does not allow for more
formal reviews. According to Wiegers, this review is less intimidating than a group
review such as a walk-through or inspection. Figure 5.7 describes the process for this
type of review.

As shown in Figure 5.7, there are six steps. Initially, the author plans the review
by identifying the reviewer(s) and a checklist. A checklist is an important element of a
review as it enables the reviewer to focus on only one criterion at a time. A checklist
is a reflection of the experience of the organization. Then, individuals review the
software product document and note comments on the review form provided by the
author. When completed, the review form can be used as “evidence” during an audit.

In this book, several checklists are presented. Here is a list of some important
features of checklists:

– each checklist is designed for a specific type of document (e.g., project plan,
specification document);

– each item of a checklist targets a single verification criteria;

– each item of a checklist is designed to detect major errors. Minor errors, such
as misspellings, should not be part of a checklist;

– each checklist should not exceed one page, otherwise it will be more difficult
to use by the reviewers;

DC 100
Plan the desk
check

DC 120
Review
the
product
document

DC 130
Conduct
meeting
(if needed)

DC 140
Edit
document

DC 150
Complete
the review
form

Checklist
(optional)

Product
document

DC 110
Send
documents
to reviewers

Figure 5.7 Desk-check review.

176 Chapter 5 Reviews

– each checklist should be updated to increase efficiency;

– each checklist includes a version number and a revision date.

During a course on peer reviews given in Sweden by Professor Laporte, an employee
of an organization proudly shared the code checklist he had developed. His list included
more than 250 items!

The employee was kindly asked to share some elements of his list with other course
participants who quickly concluded that a large number of items on the list could be
detected by a page-formatting tool. A large number of elements could also be detected
by a good compiler. Participants also identified a list of items that detected minor errors.
Following this discussion, there remained a list of about one page of detection criteria for
major errors.

The following text box presents a generic checklist, that is, a checklist that can be
used for almost any type of document to be reviewed (e.g., project plan, architecture).
For each type of software product (e.g., requirements or design), a specific checklist
will be used. For a list designed to facilitate the detection of errors in requirements,
we could add the EX identifier and include the following element: EX 1 (testable)—
the requirement must be testable. For a list of verifications for a test plan, one might
use the TP identifier.

Generic Checklist

LG 1 (COMPLETE). All pertinent information should be included or referenced.
LG 2 (RELEVANT). All information must be relevant to the software product.
LG 3 (BRIEF). Information must be stated succinctly.
LG 4 (CLEAR). Information must be clear to all reviewers and users of the document.
LG 5 (CORRECT). Information does not contain errors.
LG 6 (COHERENT). Information must be consistent with all other information in the

document and its source document(s).
LG 7 (UNIQUE). Ideas must be described once and referenced afterward.

Adapted from Gilb and Graham (1993) [GIL 93]

In the third step of the desk-check process, the reviewers verify the document
and record their comments on the review form. The author reviews the comments

5.2 Personal Review and Desk-Check Review 177

as part of step 4. If the author agrees with all the comments, he incorporates them
into his document. However, if the author does not agree, or if he believes the com-
ments have a major impact, then he should convene a meeting with the reviewers
to discuss the comments. After this meeting, one of three options should be consid-
ered: the comment is incorporated as is, the comment is ignored, or it is incorporated
with modifications. For the next step, the author can make the corrections and note
the effort spent reviewing and correcting the document, that is, the time spent by
the reviewers as well as the time spent by the author to correct the document and
conduct the meeting if this is the case. The activities of the desk-check (DC) review
are described in Figure 5.8. In the final step, the author completes the review form
illustrated in Figure 5.9.

ENTRY CRITERIA
• The document is ready for a review
INPUT
• Software product to review
DC 100. Plan the Desk-Check
Author:
• Identifies reviewers
• Chooses the checklist(s) to use
• Completes the first part of the review form
DC 110. Send documents to reviewers
Author:
• Provides the following documents to the reviewers:

o Software product to review
o Review form
o Checklist(s)

DC 120. Review the software product
Reviewers:
• Check the software product against the checklist
• Complete the review form with

o comments
o effort to conduct the review

• Sign and return the form to the author
DC 130. Call a meeting (if needed)
Author:
• Reviews the comments

o If the author agrees with all the comments, they are incorporated in the software product
o If the author does not agree with all the comments, or believes some comments have a significant impact, then

the author:
o Convenes a meeting with the reviewers
o Leads the meeting to discuss the comments and determine course of action:

Incorporate the comment as is
Ignore the comment
Incorporate the comment with modifications

DC 140. Correct the software product
The author incorporates the comments received.
DC 150. Complete the review form
Author:
• Completes the review form with:

o Total effort (i.e., by all the reviewers) required to review the software product
o Total effort required to correct the software product

• Signs the review form
EXIT CRITERIA
• Corrected software product
OUTPUT
• Corrected software product
• Completed and signed review form
MEASURE
• Effort required to review and correct the software product (person hours).

Figure 5.8 Desk-check review activities.

F
ig

ur
e

5.
9

D
es

k-
C

he
ck

re
vi

ew
fo

rm
.

5.3 Standards and Models 179

Figure 5.9 illustrates a standard form used by reviewers to record their comments
and the time they devoted to the revision of the document. The author of the docu-
ment collects these data and adds the time it took him to correct the document. The
forms will be retained by the author as “evidence” for an audit by the SQA of the
organization the author belongs to, or by the SQA of the customer.

As an alternative to the distribution of hard copies to reviewers, one can place an
electronic copy of the document, the review form and the checklist in a shared folder
on the Intranet. Reviewers are invited to provide comments as annotations to docu-
ments over a defined period of time. The author can then view the annotated docu-
ment, review the comments, and continue the Desk-Check review as described above.

In the next sections, we describe more formal reviews.

Support site for Weigers Peer Reviews http://www.processimpact.com/pr_goodies.shtml

5.3 STANDARDS AND MODELS

In this section, we present the ISO/IEC 20246 standard on work product reviews, the
Capability Maturity Model Integration (CMMI) model, and the IEEE 1028 standard,
which lists requirements and procedures for software reviews.

5.3.1 ISO/IEC 20246 Software and Systems Engineering:
Work Product Reviews

The purpose of ISO/IEC 20246 Work Product Reviews is [ISO 17d]: “to provide an
International Standard that defines work product reviews, such as inspections, reviews
and walk-throughs, that can be used at any stage of the software and systems life
cycle. It can be used to review any system and software work product. ISO/IEC 20246
defines a generic process for work product reviews that can be configured based on
the purpose of the review and the constraints of the reviewing organization. The intent
is to describe a generic process that can be applied both efficiently and effectively by
any organization to any work product. The main objectives of reviews are to detect
issues, to evaluate alternatives, to improve organizational and personal processes, and
to improve work products. When applied early in the life cycle, reviews are typically
shown to reduce the amount of unnecessary rework on a project. The work prod-
uct review techniques presented in ISO/IEC 20246 can be used at various stages of
the generic review process to identify defects and evaluate the quality of the work
product.”

let &hbox {char '046}http://www.processimpact.com/pr_goodies.shtml
http://www.processimpact.com/pr_goodies.shtml

180 Chapter 5 Reviews

Work Product

Artefact produced by a process.
Example: Project plan, requirements specification, design documentation, source

code, test plan, test meeting minutes, schedules, budgets, and incident reports.
Note 1 to entry: A subset of the work products will be baselined to be used as the

basis of further work and some will form the set of project deliverables.
ISO/IEC 20246

ISO 20246 includes an annex that describes the alignment of the activities of the
ISO 20246 standard and the procedures of the IEEE 1028 standard presented below.

5.3.2 Capability Maturity Model Integration

The CMMI® for Development (CMMI-DEV) [SEI 10a] is widely used by many
industries. This model describes proven practices in engineering. In this model, a
part of the “Verification” process area is devoted to peer reviews. Other verification
activities will be considered in more detail in a later chapter. Figure 5.10 is an extract
of the staged representation of the CMMI-DEV which describes peer reviews.

VERIFICATION
A process area in the engineering category of Maturity Level 3

Purpose
The purpose of the process area "Verification" is to ensure that selected work products meet their specified requirements.

Peer reviews are an important part of verification and are a proven mechanism for effective defect removal. An important
corollary is to develop a better understanding of the work products and the processes that produced them so that defects can
be prevented and process improvement opportunities can be identified.

Peer reviews involve a methodical examination of work products by the producers’ peers to identify defects and other
changes that are needed.

Example of Peer review methods include the following:
Inspections;
Structured walk-throughs
Deliberate refactoring
Pair programming

Specific Objective 2 - Perform Peer Reviews
Specific practice 2.1 Prepare for Peer reviews
Specific practice 2.2 Conduct Peer reviews
Specific practice 2.3 Analyse Peer review data

Figure 5.10 Peer reviews as described in the process area “Verification” of the CMMI-DEV.
Source: Adapted from Software Engineering Institute (2010) [SEI 10a].

5.3 Standards and Models 181

The process and product quality assurance process areas provide the following
list of issues to be addressed when implementing peer reviews [SEI 10a]:

– Members are trained and roles are assigned for people attending the peer
reviews.

– A member of the peer review who did not produce this work product is assigned
to perform the quality assurance role.

– Checklists based on process descriptions, standards, and procedures are avail-
able to support the quality assurance activity.

– Non-compliance issues are recorded as part of the peer review report and are
tracked and escalated outside the project when necessary.

According to the CMMI-DEV, these reviews are performed on selected work
products to identify defects and to recommend other changes required. The peer
review is an important and effective software engineering method, applied through
inspections, walk-throughs or a number of other review procedures.

Reviews that meet the CMMI requirements listed in Figure 5.10 are described in
the following sections.

5.3.3 The IEEE 1028 Standard

The IEEE 1028-2008 Standard for Software Reviews and Audits [IEE 08b] describes
five types of reviews and audits and the procedures required for the completion of
each type of review and audit. Audits will be presented in the next chapter. The
introductory text of the standard indicates that the use of these reviews is voluntary.
Although the use of this standard is not mandatory, it can be imposed by a client
contractually.

The purpose of this standard is to define reviews and systematic audits for the
acquisition, supply, development, operation and maintenance of software. This stan-
dard describes not only “what to do” but also how to perform a review. Other standards
define the context in which a review is performed and how the results of the review
are to be used. Examples of such standards are provided in Table 5.1.

Table 5.1 Examples of Standards that Require the Use of Systematic Reviews

Standard identification Title of the standard

ISO/IEC/IEEE 12207 Software Life Cycle Processes
IEEE 1012 IEEE Standard for System and Software Verification and

Validation.
IEEE 730 IEEE Standard for Software Quality Assurance Processes

182 Chapter 5 Reviews

The IEEE 1028 standard provides minimum acceptable conditions for systematic
reviews and software audits including the following attributes:

– team participation;

– documented results of the review;

– documented procedures for conducting the review.

Conformance to the IEEE 1028 standard for a specific review, such as an inspec-
tion, can be claimed when all mandatory actions (indicated by “shall”) are carried
out as defined in this standard for the review type used.

This standard provides descriptions of the particular types of reviews and audits
included in the standard as well as tips. Each type of review is described with clauses
that contain the following information [IEE 08b]:

a) Introduction to review: describes the objectives of the systematic review and
provides an overview of the systematic review procedures;

b) Responsibilities: defines the roles and responsibilities needed for the system-
atic review.

c) Input: describes the requirements for input needed by the systematic review;

d) Entry criteria: describes the criteria to be met before the systematic review
can begin, including the following:
1) Authorization,
2) Initiating event;

e) Procedures: details the procedures for the systematic review, including the
following:
1) Planning the review;
2) Overview of procedures;
3) Preparation;
4) Examination/evaluation/recording of results;
5) Rework/follow-up;

f) Exit criteria: describe the criteria to be met before the systematic review can
be considered complete;

g) Output: describes the minimum set of deliverables to be produced by the sys-
tematic review.

5.3.3.1 Application of the IEEE 1028 Standard

Procedures and terminology defined in this standard apply to the acquisition of soft-
ware, supply, development, operation, and maintenance processes requiring system-
atic reviews. Systematic reviews are performed on a software product according to
the requirements of other local standards or procedures. The term “software product”

5.3 Standards and Models 183

is used in this standard in a very broad sense. Examples of software products include
specifications, architecture, code, defect reports, contracts, and plans.

Anomaly

Any condition that deviates from expectations based on requirements specifications,
design documents, user documents, standards, etc., or from someone’s perceptions or
experiences.

Note: Anomalies may be found during, but not limited to, the review, test, analysis,
compilation, or use of software products or applicable documentation.

IEEE 1028 [IEE 08b]

The IEEE 1028 standard differs significantly from other software engineering
standards in that it does not only enumerate a set of requirements to be met (i.e., “what
to do”), such as “the organization shall prepare a quality assurance plan,” but it also
describes “how to do” at a level of detail that allows someone to conduct a systematic
review properly. For an organization that wants to implement these reviews, the text
of this standard can be adapted to the notation of the processes and procedures of
the organization, adjusting the terminology to that which is commonly used by the
organization and, after using them for a while, improve the descriptions of the review.

This standard concerns only the application of a review and not their need or the
use of the results. The types of reviews and audits are [IEE 08b]:

– management review: a systematic evaluation of a software product or process
performed by or on behalf of the management that monitors progress, deter-
mines the status of plans and schedules, confirms requirements and their system
allocation, or evaluates the effectiveness of the management approaches used
to achieve fitness for purpose;

– technical review: a systematic evaluation of a software product by a team of
qualified personnel that examines the suitability of the software product for its
intended use and identifies discrepancies from specifications and standards;

– inspection: a visual examination of a software product to detect and identify
software anomalies including errors and deviations from standards and speci-
fications;

– walk-through: a static analysis technique in which a designer or programmer
leads members of the development team and other interested parties through a
software product, and the participants ask questions and make comments about
any anomalies, violation of development standards, and other problems;

184 Chapter 5 Reviews

– audit: an independent assessment, by a third party, of a software product, a
process or a set of software processes to determine compliance with the spec-
ifications, standards, contractual agreements, or other criteria.

Table 5.2 summarizes the main characteristics of reviews and audits of the
IEEE 1028 standard. These features will be discussed in more detail in this chap-
ter and in the following chapter on audits.

In the following sections, walk-through and inspection reviews are described in
detail. These reviews are described to clearly demonstrate the meaning of a “system-
atic review” as opposed to improvised and informal reviews.

5.4 WALK-THROUGH

“The purpose of a walk-through is to evaluate a software product. A walk-through
can also be performed to create discussion for a software product” [IEE 08b]. The
main objectives of the walk-through are [IEE 08b]:

– find anomalies;

– improve the software product;

– consider alternative implementations;

– evaluate conformance to standards and specifications;

– evaluate the usability and accessibility of the software product.

Other important objectives include the exchange of techniques, style variations,
and the training of participants. A walk-through can highlight weaknesses, for exam-
ple, problems of efficiency and readability, modularity problems in the design or
the code or non-testable requirements. Figure 5.11 shows the six steps of the walk-
through. Each step is composed of a series of inputs, tasks, and outputs.

5.4.1 Usefulness of a Walk-Through

There are several reasons for the implementation of a walk-through process:

– identify errors to reduce their impact and the cost of correction;

– improve the development process;

– improve the quality of the software product;

– reduce development costs;

– reduce maintenance costs.

Ta
bl

e
5.

2
C

ha
ra

ct
er

is
tic

s
of

R
ev

ie
w

s
an

d
A

ud
its

D
es

cr
ib

ed
in

th
e

IE
E

E
10

28
St

an
da

rd

M
an

ag
em

en
t

re
vi

ew
Te

ch
ni

ca
lr

ev
ie

w
In

sp
ec

tio
n

W
al

k-
th

ro
ug

h
A

ud
it

O
bj

ec
ti

ve
M

on
ito

r
pr

og
re

ss
E

va
lu

at
e

co
nf

or
m

an
ce

to
sp

ec
ifi

ca
tio

ns
an

d
pl

an
s

Fi
nd

an
om

al
ie

s;
ve

ri
fy

re
so

lu
tio

n;
ve

ri
fy

pr
od

uc
t

qu
al

ity

Fi
nd

an
om

al
ie

s,
ex

am
in

e
al

te
rn

at
iv

es
;

im
pr

ov
e

pr
od

uc
t;

fo
ru

m
fo

r
le

ar
ni

ng

In
de

pe
nd

en
tly

ev
al

ua
te

co
nf

or
m

an
ce

w
ith

ob
je

ct
iv

e
st

an
da

rd
s

an
d

re
gu

la
tio

ns
R

ec
om

m
en

de
d

gr
ou

p
si

ze
Tw

o
or

m
or

e
pe

op
le

Tw
o

or
m

or
e

pe
op

le
3–

6
2–

7
1–

5

V
ol

um
e

of
m

at
er

ia
l

M
od

er
at

e
to

H
ig

h
M

od
er

at
e

to
H

ig
h

R
el

at
iv

el
y

lo
w

R
el

at
iv

el
y

lo
w

M
od

er
at

e
to

H
ig

h

L
ea

de
rs

hi
p

U
su

al
ly

th
e

re
sp

on
si

bl
e

m
an

ag
er

U
su

al
ly

th
e

le
ad

en
gi

ne
er

T
ra

in
ed

fa
ci

lit
at

or
Fa

ci
lit

at
or

or
au

th
or

L
ea

d
au

di
to

r

M
an

ag
em

en
t

pa
rt

ic
ip

at
es

Y
es

W
he

n
m

an
ag

em
en

t
ev

id
en

ce
or

re
so

lu
tio

n
m

ay
be

re
qu

ir
ed

N
o

N
o

N
o;

ho
w

ev
er

m
an

ag
em

en
t

m
ay

be
ca

lle
d

up
on

to
pr

ov
id

e
ev

id
en

ce
O

ut
pu

t
M

an
ag

em
en

t
re

vi
ew

do
cu

m
en

ta
tio

n

Te
ch

ni
ca

lr
ev

ie
w

do
cu

m
en

ta
tio

n
A

no
m

al
y

lis
t,

an
om

al
y

su
m

m
ar

y,
in

sp
ec

tio
n

do
cu

m
en

ta
tio

n

A
no

m
al

y
lis

t,
ac

tio
n

ite
m

s,
de

ci
si

on
s,

fo
llo

w
-u

p
pr

op
os

al
s

Fo
rm

al
au

di
t

re
po

rt
;

ob
se

rv
at

io
ns

,
fin

di
ng

s,
de

fic
ie

nc
ie

s

So
ur

ce
:A

da
pt

ed
fr

om
IE

E
E

10
28

[I
E

E
08

b]
.

186 Chapter 5 Reviews

WT 100
Plan the
walk through

WT 110
Conduct
kickoff
meeting

WT 120
Conduct
document
checking

WT 130
Conduct
logging
meeting

WT 140
Edit
document

WT 150
Complete
follow-up
exit & release

Source

Checklists

Change
requestProduct

document

Process
improvements

Figure 5.11 The walk-through review.
Source: Adapted from Holland (1998) [HOL 98].

5.4.2 Identification of Roles and Responsibilities

Four roles are described in the IEEE 1028: leader, recorder, author, and team member.
Roles can be shared among team members. For example, the leader or author may
play the role of recorder and the author could also be the leader. But, a walk-through
shall include at least two members.

The standard defines the roles as follow (adapted from IEEE 1028 [IEE 08b]):

– Walk-through leader
◦ conduct the walk-through;
◦ handle the administrative tasks pertaining to the walk-through (such as dis-

tributing documents and arranging the meeting);
◦ prepare the statement of objectives to guide the team through the walk-

through;
◦ ensure that the team arrives at a decision or identified action for each discus-

sion item;
◦ issue the walk-through output.

– Recorder
◦ note all decisions and identified actions arising during the walk-through

meeting;
◦ note all comments made during the walk-through that pertain to anoma-

lies found, questions of style, omissions, contradictions, suggestions for
improvement, or alternative approaches.

– Author
◦ present the software product in the walk-through.

– Team member

5.5 Inspection Review 187

◦ adequately prepare for and actively participate in the walk-through;
◦ identify and describe anomalies in the software product.

The IEEE 1028 standard lists improvement activities using data collected from
the walk-throughs. These data should [IEE 08b]:

– be analyzed regularly to improve the walk-through process;

– be used to improve operations that produce software products;

– present the most frequently encountered anomalies;

– be included in the checklists or in assigning roles;

– be used regularly to assess the checklists for superfluous or misleading ques-
tions;

– include preparation time and meetings; the number of participants should be
considered to determine the relationship between the preparation time and
meeting and the number and severity of anomalies detected.

To maintain the efficiency of walk-throughs, the data should not be used to eval-
uate the performance of individuals.

IEEE 1028 also describes the procedures of walk-throughs.

5.5 INSPECTION REVIEW

This section briefly describes the inspection process that Michael Fagan developed at
IBM in the 1970s to increase the quality and productivity of software development.

The purpose of the inspection, according to the IEEE 1028 standard, is to detect
and identify anomalies of a software product including errors and deviations from
standards and specifications [IEE 08b]. Throughout the development or maintenance
process, developers prepare written materials that unfortunately have errors. It is more
economical and efficient to detect and correct errors as soon as possible. Inspection
is a very effective method to detect these errors or anomalies.

History of the Inspection Process at IBM

An employee of IBM, Michael Fagan, was working in a computer chip design and man-
ufacturing department. Since the tests were not sufficient to detect errors, he developed a
technique to examine the designs before they were transferred to the production depart-
ment. This approach could detect defects that tests had not detected, thus reducing losses
and delays to start the production.

In 1971, Fagan was transferred to the software development department. Upon his
arrival, he found that software development was chaotic. Even in the absence of measures,

188 Chapter 5 Reviews

he considered that a large percentage of the development budget was allocated to rework.
He estimated the cost of the rework and found that 30–80% of the development budget
was used to correct defects unintentionally injected by developers. He decided to use a
similar approach to the one he had used for the detection of defects in computer chips,
that is, a review, to detect design and coding errors.

The effort required to perform the reviews was low compared to the high amount
of rework that would have been needed without the review. It is these results that trig-
gered the development of the inspection process. Fagan proposed to reduce the number
of injected defects and to detect and correct errors as close to the task within which they
were injected.
The objectives developed by the Fagan Inspection Process are:

– find and fix all defects in the product;

– find and fix all defects in the development process that produces the defects in a product
(e.g., remove the causes of defects in the product).

For more than three and a half years, Fagan, hundreds of developers and their man-
agers conducted inspections. During this period, the inspection process had been con-
stantly improved. In 1976, he published an article on the inspection of the design and of
code in the IBM Systems Journal [FAG 76]. Given the results, IBM asked Fagan to pro-
mote the inspection process in other divisions of the company. For helping to save mil-
lions of dollars, Fagan was awarded the largest individual corporate award ever awarded
by IBM at that time.

Adapted from Broy and Denert (2002) [BRO 02]

According to the IEEE 1028 standard, inspection allows us to (adapted from
[IEE 08b]):

a) verify that the software product satisfies its specifications;

b) check that the software product exhibits the specified quality attributes;

c) verify that the software product conforms to applicable regulations, standards,
guidelines, plans, specifications, and procedures;

d) identify deviations from provisions of items (a), (b), and (c);

e) collect data, for example, the details of each anomaly and effort associated
with their identification and correction;

f) request or grant waivers for violation of standards where the adjudication of
the type and extent of violations are assigned to the inspection jurisdiction;

g) use the data as input to project management decisions as appropriate (e.g., to
make trade-offs between additional inspections versus additional testing).

Figure 5.12 shows the major steps of the inspection process. Each step is com-
posed of a series of inputs, tasks and outputs.

5.6 Project Launch Reviews and Project Assessments 189

IP 110
Conduct
kickoff
meeting

IP 100
Plan
inspection

Source

IP 120
Conduct
document
checking

IP 130
Conduct
logging
meeting

IP 140
Edit
document

Rules

Checklists

Change
request

Product
document

Process
improvements

Inspection
request

IP 150
Complete
follow-up
exit & release

Figure 5.12 The inspection process.
Source: Adapted from Holland (1998) [HOL 98].

The IEEE 1028 standard provides guidelines for typical inspection rates, for dif-
ferent types of documents, such as anomaly recording rates in terms of pages or lines
of code per hour. As an example, for the requirements document, IEEE 1028 rec-
ommends an inspection rate of 2–3 pages per hour. For source code, the standard
recommends an inspection rate of 100–200 lines of code per hour.

An organization that has just started the implementation of formal reviews, such as inspec-
tions, could review documents at a higher rate than the inspection rates proposed by IEEE
1028. As more reliable measures are collected, such as defect detection rate and defect
removal effectiveness, the organization can decide to reduce the review rate in order to
achieve higher detection rates and therefore reduce the defect escape rate. Section 5.8
presents measures and an example of the defect detection rate calculation.

Finally, IEEE 1028 also describes the procedures of inspection.

5.6 PROJECT LAUNCH REVIEWS AND PROJECT
ASSESSMENTS

In the SQAP of their projects, many organizations plan a project launch or kick-off
meeting as well as a project assessment review, also called a lessons learned review.

190 Chapter 5 Reviews

5.6.1 Project Launch Review

The project launch review is a management review of: the milestone dates, require-
ments, schedule, budget constraints, deliverables, members of the development team,
suppliers, etc. Some organizations also conduct kick-off reviews at the beginning of
each of the major phases of the project when projects are spread over a long period
of time (as in several years).

Before the start of a project, team members ask themselves the following ques-
tions: who will the members of my team be? Who will be the team leader? What will
my role and responsibilities be? What are the roles of the other team members and
their responsibilities? Do the members of my team have all the skills and knowledge
to work on this project?

The following text box describes the kick-off review meeting used for software
projects at Bombardier Transport.

Case Study at Bombardier Transport (Adapted from Laporte
et al. (2007) [LAP 07b])

A project launch session is usually done at the beginning of a new project or at the begin-
ning of a project phase. It can also be done for an iterative development project to prepare
for the next iteration. In this case, it is called a project relaunch session. This type of ses-
sion is also well suited in cases where the performance of a project and/or process must
be improved and when a project has to be rectified.

Depending on the size, complexity, and type of project (e.g., new development
or re-use of critical software development), a typical project launch session will last
1–2 days in one location. During a project launch session, it is important that all team
members are fully dedicated to this activity. To reduce disturbances (e.g., telephone
calls), the project launch meeting may be held outside of the project office or building.
The following table shows a typical schedule for a one-day project launch session. As
the table shows, the theme of the Software Management Project (SMP), processes, roles
and responsibilities are first discussed in agenda item 4 and then in item 8. Roles and
responsibilities (R&R) are discussed under the heading Software Quality Assurance and
Verification & Validation.

A project launch review is a workshop, usually led by a facilitator, during which
the project team members define the project plan, including activities, deliverables, and
schedule. The project launch workshop can last between one and three days. But for a
typical project at Bombardier Transport, a one-day session is normally sufficient.

To illustrate the roles of team members, an example of project planning performed
during the project launch session is described below. The objectives of the project launch
review at Bombardier Transport are:

� define the project plan using an integrated team approach;

5.6 Project Launch Reviews and Project Assessments 191

� ensure common understanding of objectives, processes, deliverables, and the role and
responsibilities (R&R) of all team members;

� facilitate the exchange of information and provide “just in time” training to project
members.

Typical Agenda of a Project Launch Meeting at Bombardier Transport

Time Agenda

08h30 Welcome, agenda review, and discussions regarding participant expectations
Meeting roles to assign: secretary and time-keeper

09h00 Overview of the software engineering process at Bombardier Transport
10h30 Software project management process:

1. Project inputs

2. Project scope, constraints and assumptions

3. Project iterations and their associated objectives (e.g., imposed milestones)

4. Structure of the project team and role assignment

5. High-level architecture

6. Tailoring of deliverables (e.g., for each iteration)

7. Personnel requirements

8. Relationships with other groups and associated roles/responsibilities

9. Identification and analysis of risks
12h00 Lunch break
13h00 Software project management process (continued)
14h30 Break
14h45 Software development process:

� Define requirements and their attributes
� Description of traceability

15h00 Software Configuration management process:
� Process overview
� Identification of configuration items
� Identification of the Baseline for each iteration
� Audits and version control

15h45 Software Quality Assurance and Verification and Validation processes:
� Identification of roles and activities

16h00 Software infrastructure and training:
� Development environment
� Test and validation environment
� Qualification environment
� Project training needs

16h30 Summary and conclusion
17h00 Adjournment

192 Chapter 5 Reviews

5.6.2 Project Retrospectives

If the poor cousin of software engineering is quality assurance, the poor cousin of
quality assurance reviews is the project retrospective. It is ironic that a discipline,
such as software engineering, which depends as much as it does on the knowledge
of the people involved, dismisses the opportunity to learn and enrich the knowledge
of an organization’s members. The project retrospective review is normally carried
out at the end of a project or at the end of a phase of a large project. Essentially, we
want to know what has been done well in this project, what has gone less well and
what could be improved for the next project. The following terms are synonymous:
lessons learned, post mortem, after-action-review.

Post Mortem

A collective learning activity that can be organized for projects or at the end of a phase
or at project completion. The main motivation is to reflect on what has happened in the
project to improve future practices for individuals who participated in the project and for
the organization as a whole. The result of a post-mortem is a report.

Dingsøyr (2005) [DIN 05]

Lessons Learned

The knowledge gained during a project which shows how project events were addressed
or should be addressed in the future with the purpose of improving future performance.

PMBOK® Guide [PMI 13]

Basili et al. (1996) [BAS 96] published the first controlled experiments that cap-
tured experience. This approach, called Experience Factory, where experience is gath-
ered from software development projects, is packaged and stored in a database of
experience. The packaging refers to the generalization, adaptation, and formalization
of the experience until it is easy to reuse. In this approach, experience is separate from
the organization that is responsible for capturing the experience.

A post mortem review, conducted at the end of a phase of a project or at the end
of a project, provides valuable information such as [POM 09]:

– updating project data such as length, size, defects, and schedule;

– updating quality or performance data;

– a review of performance against plan;

– updating databases for size and productivity;

5.6 Project Launch Reviews and Project Assessments 193

– adjustment of processes (e.g., checklist), if necessary, based on the data (notes
taken on the proposal process improvement (PIP) forms, changes in design or
code, lists of default controls indicated and so on).

There are several ways to conduct project retrospectives; Kerth (2001) lists 19
techniques in his book [KER 01].

Support sites for lessons learned:

Karl Wiegers: http://www.processimpact.com/

Norm Kerth: http://www.retrospectives.com/

Some techniques focus on creating an atmosphere of discussion in the project,
others consider past projects, still others are designed to help a project team to identify
and adopt new techniques for their next project, and some address the consequences of
a failed project. Kerth recommends holding a 3-day session to make a lasting change
in an organization [KER 01]. This section presents a less stringent and less costly
approach to capturing the experience of project members.

The facilitator of a project retrospective session should not be the project manager. It is
best, to preserve neutrality, that it be a person who was not directly involved in the project.

Since a retrospective session may create some tension, especially if the project
discussed has not been a total success, we propose rules of behavior so that the session
is effective. The rules of behavior at these sessions are:

– respect the ideas of the participants;

– maintain confidentiality;

– not to blame;

– not to make any verbal comment or gesture during brainstorming;

– not to comment when ideas are retained;

– request more details regarding a particular idea.

The following quote outlines the basis of a successful assessment session.

let &hbox {char '046}http://www.processimpact.com/
http://www.processimpact.com/
let &hbox {char '046}http://www.retrospectives.com/
http://www.retrospectives.com/

194 Chapter 5 Reviews

Rule of Thumb for a Successful Lessons Learned Session

“Regardless of what we discover, we truly believe that everyone did their best, given his
qualifications and abilities, resources and the project context.”

Kerth (2001) [KER 01]

The main items on the agenda during a project retrospective review are:

– list the major incidents and identify the main causes;

– list the actual costs and the actual time required for the project, and analyze
variances from estimates;

– review the quality of processes, methods, and tools used for the project;

– make proposals for future projects (e.g., indicate what to repeat or reuse
(methodology, tools, etc.), what to improve, and what to give up for future
projects).

In many organizations, the transfer of knowledge and lessons learned is not necessarily
done from one project to another. For example, one of the co-authors conducted lessons
learned sessions in a division of an international transport company. Several times during
the same lessons learned session, participants raised problems encountered during the
project that had just come to an end and other participants said they had the same problems
in previous projects!

A retrospective session typically consists of three steps: first, the facilitator
explains, along with the sponsor, the objectives of the meeting; second, he explains
what a retrospective session is, the agenda and the rules of behavior; lastly, he con-
ducts the session.

A retrospective session takes place as follows:
Step One

– presentation of the facilitators by the sponsor;

– introduction of participants;

– presentation of the assumption:

5.6 Project Launch Reviews and Project Assessments 195

◦ Regardless of what we discover, we truly believe that everyone did the best
job, given his qualifications and abilities, resources, and project context.

– Presentation of the agenda of a typical retrospective session lasting approxi-
mately three hours:
◦ introduction;
◦ brainstorm to identify what went well and what could improve;
◦ prioritize items;
◦ identify the causes;
◦ write a mini action plan.

Step Two—Introduction to the retrospective session

– what is a retrospective session?

– when is a lesson really learned?
◦ what is individual learning, team learning?
◦ what is learning in an organization?

– why have a retrospective session?

– potential difficulties of a retrospective session;

– session rules;

– what is brainstorming? The rules of brainstorming are:
◦ no verbal comments or gestures;
◦ no discussion when ideas are retained.

Step Three—Conducting the retrospective session

– chart a history (timeline) of the project (15–30 minutes);

– conduct brainstorming (30 minutes);
◦ individually, identify on post-it notes:

� what went well during the project (e.g., what to keep)?
� what could be improved?
� were there any surprises?

◦ collect ideas and post them on the project history chart

– clarify ideas (if necessary);

– group similar ideas;

– prioritize ideas;

– find the causes using the “Five Why” technique:
◦ what went well during the project?
◦ what could be improved?

– final questions;
◦ for this project, name what you would have liked to change?
◦ for this project, name what you wish to keep.

196 Chapter 5 Reviews

– write a mini action plan;
◦ what, who, when?

– end the session;
◦ ensure the commitment to implement the action plan;
◦ thanks to the sponsor and the participants.

“Those who do not learn from history are doomed to repeat it.”
Santayana (1905)

“Insanity is to do the same thing again and expect different results.”
Einstein

“The desire and the ability of an organization to continuously learn from any source and
rapidly convert this learning into action is its ultimate competitive advantage.”

Jack Welch, former CEO of General Electric
“The fastest way to succeed is to double failures!”

Thomas Watson, former President of IBM

Even if logic dictates that conducting project retrospective or lessons learned
sessions are beneficial for the organization, there are still some factors that affect
these types of sessions:

– leading lessons learned sessions takes time and often management wants to
reduce project costs;

– lessons learned benefit future projects;

– a culture of blame (finger pointing) can significantly reduce the benefits of
these sessions;

– participants may feel embarrassed or have a cynical attitude;

– the maintenance of social relationships between employees is sometimes more
important than the diagnosis of events;

– people may be reluctant to engage in activities that could lead to complaints,
to criticism, or blame;

– some people have beliefs that predispose them to the acceptance of lessons
learned; beliefs such as “Experience is enough to learn” or “If you do not have
experience, you will not learn anything”;

– certain organizational cultures do not seem able or willing to learn.

5.7 Agile Meetings 197

Case Study at the Ministry of Justice of Quebec

In 1999, the Ministry of Justice of Quebec decided to group the management activi-
ties of the fines and offences departments. More than 700,000 cases were processed and
$110 million was collected annually. However, an increase in accounts receivable was
noted and a decline in revenues. These sectors were supported by two computer systems.
The system for the management of the offences was designed in the early 1990s. The
revenue control system, designed in 1983, was used by collectors to track the payment of
fines. The project involved the development of a new system, i.e. the offence management
and collection of fines system, to assist the activities of the new department. The project
had an overall net savings of $46.7 million and a decrease in costs of 35.9%. This project
has received several awards.

Project Retrospective

In December 2006, the project director held meetings to conduct a series of project retro-
spectives. Three, three-hour sessions were conducted. Three groups of people participated
in the project retrospective sessions: users and project leaders (12 people), managers (5
people) and developers (6 people). The agenda for the retrospective activities was as fol-
lows: the director presented the objectives of the meeting and the facilitators; he then
announced that this was a session which aimed to improve the way we work on future
projects; it was not a session designed to blame the people who have made mistakes;
the session should help identify what went well during the project and what could be
improved. With that said, the director wished all a good session and withdrew.

After describing the project timeline, a first session to collect “what went well” ideas
began. Early in the session, participants seemed somewhat shy to express their ideas.
Then, when they grasped that the facilitators would not allow criticism of the ideas, they
started to open up and express themselves freely. Then, a session to collect ideas about
“what could be improved” was conducted. At the end of the retrospective sessions, par-
ticipants were very enthusiastic, and expressed their satisfaction about the sessions held.
Also, they had a greater understanding of the total picture of the completed multi-year
project and had many ideas for future projects.

Translated from Laporte (2008) [LAP 08]

5.7 AGILE MEETINGS

For several years, agile methods have been used in industry. One of these methods,
“SCRUM,” advocates frequent short meetings. These meetings are held every day
or every other day for about 15 minutes (no more than 30 minutes). The purpose
of these meetings is to take stock and discuss problems. These meetings are simi-
lar to management meetings described in the IEEE 1028 standard but without the
formality.

198 Chapter 5 Reviews

In my team, we work according to the agile methodology and at the end of each Sprint,
we have a review session where each member identifies what, in his opinion, was good or
not so good during the Sprint. We identify the list of things to improve that each member
would like to really consider. Afterward, problems that have the most votes are inserted
into backlogs according to their priority.

During these meetings, the “Scrum Master” typically asks three questions of the
participants:

– What have you accomplished, in the “to do” list of tasks (Backlog), since the
last meeting?

– What obstacles prevented you from completing the tasks?

– What do you plan to accomplish by the next meeting?

At the Acme Company, which develops systems that manage promotional campaigns and
their return on investment calculations, adopting the Scrum development methodology
provided many benefits. With the recruitment of new employees, knowledge transfer was
easier thanks to “Daily Scrum” meetings and code reviews. In the last week of an iteration,
all developers, novices or experts, are involved in the code review. The goal was not to
underestimate the skills of older developers, but to generalize principles and also to train
new developers. At the end of an iteration, a retrospective session is organized to check the
elements to retain and improve for the next iteration. The application of these techniques
reduces project deadlines and develops better software.

These meetings allow all participants to be informed on the status of the project,
its priorities, and the activities that need to be performed by members of the team.
The effectiveness of these meetings is based on the skills of the “Scrum Master.”
He should act as facilitator and ensure that the three questions are answered by all
participants without drifting into problem-solving.

“None of us is as smart as all of us!”
Gerald Weinberg

5.8 Measures 199

5.8 MEASURES

An entire chapter is devoted to measures. This section describes only the measures
associated with reviews. Measures are mainly used to answer the following questions:

– How many reviews were conducted?

– What software products have been reviewed?

– How effective were the reviews (e.g., number of errors detected by number of
hours for the review)?

– How efficient were the reviews (e.g., number of hours per review)?

– What is the density of errors in software products?

– How much effort is devoted to reviews?

– What are the benefits of reviews?

The measures that allow us to answer these questions are:

– number of reviews held;

– identification of the revised software product;

– size of the software product (e.g., number of lines of code, number of pages);

– number of errors recorded at each stage of the development process;

– effort assigned to review and correct the defects detected.

“If you have just started to do inspections, you should detect about 50% of defects in
your software product (this figure varies from a minimum of close to 20% to 90-95%). If
you support the inspection with good project management, design and coding standards,
and the process measures are publicized, it is possible to systematically obtain a defect
detection rate of approximately 90%.”

Ed Weller

Tables 5.3 and 5.4, presented at a meeting of software practitioners, show the data
that can be collected. Table 5.3 shows the number of reviews, the type of documents,
and the errors documented during a project.

The data collected allow us to estimate the number of residual errors and the
defect detection efficiency for the development process as illustrated in Table 5.4. For
example, for the requirements analysis activity, 25 defects were detected, two defects
during the development of the high-level design, one defect during the detailed

Ta
bl

e
5.

3
A

C
om

pa
ny

’s
Pe

er
R

ev
ie

w
D

at
a

[B
O

U
05

]

N
um

be
r

of
N

um
be

r
of

lin
es

O
pe

ra
tio

na
l

A
ve

ra
ge

O
P

de
fe

ct
M

in
or

de
fe

ct
s

A
ve

ra
ge

m
in

or
de

fe
ct

Pr
od

uc
tt

yp
e

in
sp

ec
tio

ns
in

sp
ec

te
d

de
fe

ct
s

de
te

ct
ed

de
ns

ity
/1

00
0

lin
es

de
te

ct
ed

de
ns

ity
/1

00
0

lin
es

P
la

ns
18

59
03

79
13

46
9

79
Sy

st
em

re
qu

ir
em

en
ts

3
82

5
13

16
31

38
So

ft
w

ar
e

re
qu

ir
em

en
ts

72
31

47
6

63
0

20
86

4
27

Sy
st

em
de

si
gn

1
20

0
–

–
1

5
So

ft
w

ar
e

de
si

gn
35

9
13

64
14

10
9

1
10

73
8

C
od

e
82

30
81

2
15

3
5

78
0

25
Te

st
do

cu
m

en
t

30
15

26
5

62
4

32
6

21
P

ro
ce

ss
2

79
6

14
18

27
34

C
ha

ng
e

re
qu

es
t

8
22

95
56

24
51

22
U

se
r

do
cu

m
en

t
3

22
79

1
0

89
39

O
th

er
72

29
21

6
18

6
6

81
9

28
To

ta
ls

65
0

25
54

81
13

03
5

45
30

18

Ta
bl

e
5.

4
E

rr
or

D
et

ec
tio

n
T

hr
ou

gh
ou

tt
he

D
ev

el
op

m
en

tP
ro

ce
ss

[B
O

U
05

]

D
et

ec
tio

n
ac

tiv
ity

A
ttr

ib
ut

ed
ac

tiv
ity

R
A

H
L

D
D

D
C

U
T

T
&

I
Po

st
-r

el
ea

se
To

ta
l

A
ct

iv
ity

es
ca

pe
Po

st
-a

ct
iv

ity
es

ca
pe

Sy
st

em
de

si
gn

6
1

1
0

3
2

13
15

%
R

A
25

2
1

0
1

1
30

17
%

3%
H

L
D

32
7

2
8

3
52

38
%

6%
D

D
43

15
5

7
70

39
%

10
%

C
U

T
58

21
4

83
30

%
5%

T
&

I
8

2
10

20
%

20
%

To
ta

l
31

35
52

75
46

19
25

8
7%

L
eg

en
d:

at
tr

ib
ut

ed
ac

tiv
ity

,p
ro

je
ct

ph
as

e
w

he
re

th
e

er
ro

ro
cc

ur
re

d;
de

te
ct

io
n

ac
tiv

ity
,p

ha
se

of
th

e
pr

oj
ec

tw
he

re
th

e
er

ro
rw

as
fo

un
d;

R
A

,r
eq

ui
re

m
en

ts
an

al
ys

is
;

H
L

D
,p

re
lim

in
ar

y
de

si
gn

;D
D

,d
et

ai
le

d
de

si
gn

;C
U

T,
co

di
ng

an
d

un
it

te
st

in
g;

T
&

I,
te

st
an

d
in

te
gr

at
io

n;
po

st
-r

el
ea

se
,n

um
be

r
of

er
ro

rs
de

te
ct

ed
af

te
r

de
liv

er
y;

ac
tiv

ity
es

ca
pe

,p
er

ce
nt

ag
e

of
er

ro
rs

th
at

w
er

e
no

td
et

ec
te

d
du

ri
ng

th
is

ph
as

e
(%

);
po

st
-a

ct
iv

ity
es

ca
pe

,p
er

ce
nt

ag
e

of
er

ro
rs

de
te

ct
ed

af
te

r
de

liv
er

y
(%

).

202 Chapter 5 Reviews

design, zero defects in the coding and debugging activities, one failure during testing
activities and integration, and one failure after delivery.

We can calculate the defect detection efficiency of the review conducted during
the requirements phase:

(30 − 5)∕30 × 100 = 83%.

We can also calculate the percentage of defects that originate from the require-
ments phase:

30∕258 × 100 = 12%.

It is therefore possible, given these data, to make different decisions for a future
project. For example:

– to reduce the number of defects injected during the requirements phase, we can
study the 25 defects detected and try to eliminate them;

– you can reduce the number of pages inspected per unit of time in order to
increase defect detection;

– there is a large number of defects that were not detected during preliminary
and detailed design activities: 38% and 39%, respectively. A causal analysis of
these defects could reduce these percentages.

Case of Implementing Measures Without Validating the Effects or Adapting
Them to the Context

In a Montreal hospital, a renowned doctor from France became manager of a clinical
research project. He tried to introduce verification measures throughout the development
process. Although his idea was not bad, he used data from the aviation industry and from
a much more experienced group than his team to make assessments of software products
and of his employees.

Unfortunately, many developers were laid off before the measures were adapted to
the context of a small team in a clinical research environment which did not have a CMMI
maturity level 2 and the doctor returned to the practice of medicine!

5.9 SELECTING THE TYPE OF REVIEW

To determine the type of review and its frequency, the criteria to be considered are:
the risk associated with the software to be developed, the criticality of the software,

5.9 Selecting the Type of Review 203

Table 5.5 Example of a Matrix for the Selection of a Type of Review

Technical drivers—complexity

Product Low Medium High

Software requirements Walk-through Inspection Inspection
Design Desk-check Walk-through Inspection
Software code and unit test Desk-check Walk-through Inspection
Qualification test Desk-check Walk-through Inspection
User/operator manuals Desk-check Desk-check Walk-through
Support manuals Desk-check Desk-check Walk-through
Software documents, for example,

Version Description Document (VDD),
Software Product Specification (SPS),
Software Version Description (SVD)

Desk-check Desk-check Desk-check

Planning documents Walk-through Walk-through Inspection
Process documents Desk-check Walk-through Inspection

software complexity, the size and experience of the team, the deadline for completion,
and software size.

Table 5.5 is an example of a support matrix for selecting a type of review. The
column “document review” shows a list of products to review. The column “complex-
ity” shows the classification criteria and type of review to be used. In this example, the
degree of complexity is measured as low, medium, and high. Complexity is defined
as the level of difficulty for understanding a document and verifying it. A low com-
plexity level indicates that a document is simple or easily checked while the high
complexity level is defined for a product that is difficult to verify. Table 5.5 is only
an example. The criteria for choosing the type of review and the product to review
should be documented in the project plan or the SQAP.

In Chapter 1, we briefly introduced an example of the software quality for the
aircraft engine manufacturer Rolls-Royce. Following is a concrete example of the
application of code inspections at Rolls-Royce.

Code Inspections at the Aircraft Engine Manufacturer
Rolls-Royce

A group from the Rolls-Royce Company develops embedded software for aircraft engine
controllers. Obviously, these programs are critical, and software and development is sub-
ject to the DO-178 de facto standard presented in the previous chapter.

204 Chapter 5 Reviews

This company has significantly increased the efficiency of the inspection process.
Developers have considerably reduced the number of errors in their software before the
software is delivered to the systems engineering team.

The engine manufacturer has managed this without modifying either the process or
the tools and without adding additional effort for inspections. In this company, over 52%
of verification efforts are tests and 24% of total efforts are peer reviews.

The method developed at Rolls-Royce is based on measuring the ability of develop-
ers and those who participate in inspections and to select, using data (which is confiden-
tial), the people who will inspect the product of a particular developer.

The company measured the effectiveness of each author and reviewer. The effective-
ness of the authors is measured in number of errors injected per 1000 lines of code. The
company found a large variation in defect injection between authors (i.e., 0.5–18 defects
injected per 1000 lines of code). The company also measured the detection efficiency for
each reviewer. Some reviewers detected only 36% of errors, while the best detected 90%.
Another development team noted a factor of 10 between the reviewers. The company
noticed that the best authors are not necessarily the best reviewers.

Rolls-Royce has developed the following table to describe the effectiveness of
authors and reviewers. The left side shows the data for the injection rate of errors for
developers A to F. For example, developer A typically injects 0.5 errors per 1000 lines
of code and developer F injects 18. The right side of the table shows the effectiveness of
detection of reviewers A to F. Note that reviewer A has a 75% detection rate and reviewer
F has a rate of 30%.

Reviewer effectiveness
Defect detection rate

C B A E D F

94% 80% 75% 50% 45% 30%

A 0.5 0.0 0.1 0.1 0.3 0.3 0.4

Author
effectiveness

B 1.0 0.1 0.2 0.3 0.5 0.6 0.7

C 3.0 0.2 0.6 0.8 1.5 1.7 2.1

D 4.0 0.2 0.8 1.0 2.0 2.2 2.8

Defects introduced
per 1000 lines

E 10.0 0.6 2.0 2.5 5.0 5.5 7.0

F 18.0 1.1 3.6 4.5 9.0 9.9 12.6

“Effectiveness of authors and reviewers.”

5.11 Software Quality Assurance Plan 205

This table is used to assign one or more effective reviewers to detect errors of an
author who makes many errors. Rolls-Royce says the best organizations (world class
organization) produce software with one residual defect per 1000 lines of code (defect
escape rate). At Rolls-Royce, they have managed to reduce the number of residual defects
to 0.03 per 1000 lines of code.

While this approach has been used for code inspections, it can also be used for other
artifacts (e.g., requirements, architecture) of a project.

Adapted from Nolan et al. (2015) [NOL 15]

5.10 REVIEWS AND BUSINESS MODELS

In Chapter 1, we presented the main business models for the software industry
[IBE 02]:

– Custom systems written on contract: The organization makes profits by selling
tailored software development services for clients.

– Custom software written in-house: The organization develops software to
improve organizational efficiency.

– Commercial software: The company makes profits by developing and selling
software to other organizations.

– Mass-market software: The company makes profits by developing and selling
software to consumers.

– Commercial and mass-market firmware: The company makes profits by selling
software in embedded hardware and systems.

Each business model is characterized by its own set of attributes or factors: crit-
icality, the uncertainty of needs and requirements (needs versus expectations) of the
users, the range of environments, the cost of correction of errors, regulation, project
size, communication, and the culture of the organization.

Business models help us understand the risks and the respective needs in regards
to software practices. Reviews are techniques that detect errors and thus reduce the
risk associated with a software product. The project manager, in collaboration with
SQA, selects the type of review to perform and the documents or products to review
throughout the life cycle in order to plan and budget for these activities.

The following section explains the requirements of the IEEE 730 standard with
regard to project reviews.

5.11 SOFTWARE QUALITY ASSURANCE PLAN

The IEEE 730 standard defines the requirements with respect to the review activi-
ties to be described in the SQAP of a project. Reviews are central when it comes

206 Chapter 5 Reviews

time to assess the quality of a software deliverable. For example, product assurance
activities may include SQA personnel participating in project technical reviews, soft-
ware development document reviews, and software testing. Consequently, reviews
are to be used for both product and process assurance of a software project. IEEE
730 recommends that the following questions be answered during project execution
[IEE 14]:

– Have periodic reviews and audits been performed to determine if software
products fully satisfy contractual requirements?

– Have software life cycle processes been reviewed against defined criteria and
standards?

– Has the contract been reviewed to assess consistency with software products?

– Are stakeholder, steering committee, management, and technical reviews held
based on the needs of the project?

– Have acquirer acceptance tests and reviews been supported?

– Have action items resulting from reviews been tracked to closure?

The standard also describes how reviews can be done in projects that use an agile
methodology. It states that “reviews can be done on a daily basis,” which reflects the
agile culture of conducting a daily activity.

We know that SQA activities need to be recorded during the course of a software
project. These records serve as proof that the project did the activities and can pro-
vide these records when asked. Review results and completed review checklists can
be a good source of evidence. Consequently, it is recommended that project teams
keep a record of the meeting minutes for all technical and management reviews they
conduct.

Finally, an organization should base process improvement efforts on the results
of in-process as well as completed projects, gathering lessons learned, and the results
of ongoing SQA activities such as process assessments and reviews. Reviews can play
an important role in organization-wide process improvement of software processes.
Preventive actions are taken to prevent occurrence of problems that may occur in the
future. Non-conformances and other project information may be used to identify pre-
ventive actions. SQA reviews propose preventive actions and identify effectiveness
measures. Once the preventive action is implemented, SQA evaluates the activity
and determines whether the preventive action is effective. The preventive action pro-
cess can be defined either in the SQAP or in the organizational quality management
system.

5.12 SUCCESS FACTORS

Although reviews are relatively simple and highly effective techniques, there are sev-
eral factors that can greatly help their effectiveness and efficiency. Conversely, many

5.12 Success Factors 207

factors can affect the review to the point of no longer being used in an organization.
Some factors related to an organization’s culture, which can promote the development
of quality software, are listed below.

Factors that Foster Software Quality

1) Visible management commitment
– provide the resources and time to conduct reviews such as an inspection;
– ensure that reviews are planned in the project plan or in the quality assurance plan;
– maintain reviews (e.g., inspections) even when the schedule is tight;
– occasionally revise the overall results of reviews and consider proposals to improve

the process;
– attend the training session;
– conduct reviews with colleagues (e.g., inspect a project plan, a software quality

assurance plan)

2) Good team spirit
– reviews (e.g., inspections) are made by team members in order to help each other

and increase product quality.

Following are the factors related to an organization’s culture that can harm the
development of quality software.

Factors that may Adversely Affect Software Quality

1) Using reviews to evaluate the performance of a developer;

2) When the “ego” of authors do not accept anomalies identified in their documents
– I do not need help, because I’m the best!
– I do not need help from someone who is junior to me

3) Participants do not properly prepare for the meeting;

4) The team members have not been trained to perform the reviews, especially the
inspection;

5) Wanting to get revenge;
– The lack of a skilled facilitator;
– The facilitator must ensure that reviewers do not embarrass the author of a document

with derogatory remarks or gestures (i.e., body language).

208 Chapter 5 Reviews

5.13 TOOLS

Following are some tools for effective reviews.

Tools for Conducting Reviews

Several free software tools are available to facilitate code review:

– Idutils: an indexing tool that allows the creation of a database of identifiers used in a
program;

– Egrep: a tool to search regular expression patterns in text files;

– Find: allows a system file to be viewed;

– Diff: to compare two files and show differences;

– Cscope: a C-code browser;

– LXR: a web interface to explore the source code online and offer cross-reference.

5.14 FURTHER READING

Wiegers K. The seven deadly sins of software reviews. Software Development, vol. 6, issue
3, 1998, pp. 44–47.

Wiegers K. A little help from your friends. Peer Reviews in Software, Pearson Education,
Boston, MA, 2002, Chapter 2.

Wiegers K. Peer review formality spectrum. Peer Reviews in Software, Pearson Education,
Boston, MA, 2002, Chapter 3.

5.15 EXERCISES

5.1 Develop a checklist for an architecture document.

5.2 Identify the activities that must be performed by Quality Assurance.

5.3 List the benefits of walk-throughs or inspections from the perspective of these key
players:

a) development manager;

b) developers;

c) quality assurance;

d) maintenance personnel.

5.4 Provide some reasons for not carrying out inspections.

5.15 Exercises 209

5.5 Name some objectives that are not the goal of an inspection.

5.6 Calculate the residual error given the following: 16 errors were identified in a 36-page
document. We know our error detection rate is 60% and that we inject 17% of new errors
when we make corrections to the errors detected. Calculate the number of errors per
page in the document that remain after completing the review. Explain your calculation.

5.7 Develop a checklist from the Java/C++ programming guide.

5.8 What benefits do these key players get from a review?

a) analysts,

b) developers,

c) managers,

d) SQA,

e) maintainers,

f) testers.

5.9 Describe the advantages and disadvantages of formal reviews.

5.10 Describe the advantages and disadvantages of informal reviews.

5.11 Provide criteria for selecting a type of review.

5.12 Why should we do project retrospectives?

5.13 Complete the table on the next page by putting an “X” in the appropriate columns.

Objective of the peer review Desk-check Walk-through Inspection

Find defects/errors

Verify compliance with the specifications

Verify compliance with standards

Check that the software is complete and correct

Assess maintainability

Collect data

Measure the quality of the software product

Train personnel

Transfer knowledge

Ensure that errors were corrected

Chapter 6

Software Audits

After completing this chapter, you will be able to understand the:

– utility of software audits;

– audit of a management system;

– software audit and problem resolution according to the ISO 12207 standard;

– software audit process recommended by the IEEE 1028 standard;

– assessment of type audit recommended by the CMMI® model;

– corrective and preventive process;

– audit section of the SQA plan recommended by the IEEE 730 standard.

6.1 INTRODUCTION

Different types of reviews were presented in the previous chapter. This chapter is
dedicated to the audit, which is one of the most formal types of reviews. We begin by
providing definitions that are presented in some standards.

Different types of conformity certificates (e.g., audits) respond to different needs,
such as the needs of an organization that develops software products or those of a
client of a software product supplier. The independence level of the auditor as well as
the cost varies depending on the audit type. The notes of the definition in the following
text box indicate that there are internal audits and external audits performed by second
and third parties.

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

210

6.1 Introduction 211

Management System

System to establish policy and objectives and to achieve those objectives.
ISO 19011 [ISO 11g]

Audit Criteria

Set of policies, procedures or requirements used as references against which objective
evidence is compared.

ISO 9000 [ISO 15b]
Audit Evidence

Records, statement of fact or other information, which are relevant to the audit criteria
and verifiable.

ISO 9000 [ISO 15b]
Audit

Systematic, independent and documented process for obtaining audit evidence (3.3) and
evaluating it objectively to determine the extent to which the audit criteria (3.2) are
fulfilled.

Note 1: Internal audits, sometimes called first party audits, are conducted by the
organization itself, or on its behalf, for management review and other internal purposes
(e.g. to confirm the effectiveness of the management system or to obtain information for
the improvement of the management system). Internal audits can form the basis for an
organization’s self-declaration of conformity. In many cases, particularly in small orga-
nizations, independence can be demonstrated by the freedom from responsibility for the
activity being audited or freedom from bias and conflict of interest.

Note 2: External audits include second and third party audits. Second party audits
are conducted by parties having an interest in the organization, such as customers, or by
other persons on their behalf. Third party audits are conducted by independent auditing
organizations, such as regulators or those providing certification.

ISO 19011 [ISO 11g]

There are different types of audit:

– audits to verify the compliance to a standard, such as the audits described in
International Organization for Standardization (ISO) standards such as ISO
9001 and IEEE 1028;

– compliance audits for a model such as the Capability Maturity Model Integra-
tion (CMMI) that are used to select a supplier before awarding a contract or
assess a supplier during a contract;

– audits ordered by the management team of the organization to verify the
progress of a project against its approved plan.

A mandate can be assigned to an external consultant or to members of the person-
nel of the organization that are not involved with the project, specifying the questions

212 Chapter 6 Software Audits

that the audit should answer, the audit schedule, the audit participants, and the format
of the audit report (e.g., findings and recommendations).

9.2 Internal Audit

9.2.1 The organization shall conduct internal audits at planned intervals to provide infor-
mation on whether the quality management system:

a) conforms to:
1) the organization’s own requirements for its quality management system;
2) the requirements of this International Standard;

b) is effectively implemented and maintained.

9.2.2 The organization shall:

a) plan, establish, implement and maintain an audit programme(s) including the
frequency, methods, responsibilities, planning requirements and reporting, which
shall take into consideration the importance of the processes concerned, changes
affecting the organization, and the results of previous audits;

b) define the audit criteria and scope for each audit;

c) select auditors and conduct audits to ensure objectivity and the impartiality of
the audit process;

d) ensure that the results of the audits are reported to relevant management;

e) take appropriate correction and corrective actions without undue delay;

f) retain documented information as evidence of the implementation of the audit
programme and the audit results.

Note: See ISO 19011 for guidance.
ISO 9001 [ISO 15]

We end this section with the definition of an audit as presented by the Project
Management Institute (PMI®) given that audits are often ordered by project managers
themselves.

Quality Audit

A quality audit is a structured, independent process to determine if project activities com-
ply with organizational and project policies, processes, and procedures. The objectives of
a quality audit may include:

– identify all good and best practices being implemented;

– identify all nonconformity, gaps, and shortcomings;

6.1 Introduction 213

– share good practices introduced or implemented in similar projects in the organization
and/or industry;

– proactively offer assistance in a positive manner to improve implementation of pro-
cesses to help the team raise productivity; and

– highlight contributions of each audit in the lessons learned repository of the
organization.

Quality audits can be either planned or random, and can be conducted by internal or
external auditors.

Quality audits can confirm the execution of approved change modifications such as
defect corrections and corrective actions.

PMBOK® Guide [PMI 13]

In addition to verifying compliance, it should be noted that this audit defini-
tion underlines the fact that the audit can also be done to improve organizational
performance.

Remember that in the cost of quality model, audit is an evaluation practice also
referred to as a detection activity: the verification or evaluation costs of a product or
of a service during the different phases of the development life cycle.

Table 6.1 presents the components of detection costs.
In Chapter 1, the main software business models were presented. Audits allow

for detecting defects and therefore diminish the software product development risks.
Custom systems written on contract, mass market software, commercial, and mass-
market firmware use audits extensively.

The software audits can be performed from several perspectives:

– an external registrar who audits the quality system to assess its compliance for
ISO 9001 certification;

– an external auditor that audits for compliance to government standards, such as
for the medical industry (e.g., standards of the Food and Drug Administration),
or to certify the achievement of a CMMI maturity level;

Table 6.1 Software Quality Cost Categories (Adapted from Krasner (1998) [KRA 98])

Major category Sub-category Definition
Typical elementary
costs

Detection costs Discover the state of
the product

Discover the non-
conformity level

Test, software quality
assurance (SQA)
inspections, reviews

Ensure meeting the
stated quality

Quality control
mechanism

Product quality audits,
new versions
delivery decision

214 Chapter 6 Software Audits

– an internal auditor that audits a project or software process to ensure that inter-
nal controls are adequate. This perspective, for example, can focus on security
and fraud detection or simply the identification of inefficiencies. It is a way to
ensure that the mandatory processes of the information system are effectively
applied. These audits may also prepare an organization to comply with a law
or an external regulation such as the Sarbanes-Oxley law of 2002 [SAR 02];

– SQA that audits projects and processes on behalf of management to ensure
that teams follow the mandated life cycle processes. This perspective is mainly
concerned with the effectiveness and improvement of processes;

– the management team or a project manager may also request that an audit
be conducted to determine if a specific internal activity or project assigned
to an external provider is complying with the contract specifications and
agreed/prescribed clauses. This audit perspective is performed at a specific
time or milestone to verify if the work is progressing according to plans;

– a professional designation, such as the board of professional engineers of Cal-
ifornia, may decide to audit a professional to determine if his work meets its
commitments to the code of ethics and that the engineer correctly applies,
through his services, the concerns for safeguarding life, health, property, eco-
nomic interests, the public interest, and the environment.

For more information on the application of the Sarbanes-Oxley Act (SOX) to internal
auditing controls for an ISO 9001 quality management system, visit the following web-
site: http://www.asq.org and type SOX in the search box.

Why audit? Whatever the business model of the organization, that is, contracted
or in-house software development, commercial software development, mass-market
software, or embedded software, all organizations, even public organizations, want
to meet their objectives. One way to ensure meeting their objectives is to ensure the
constant compliance and improvement of processes. Audit activities are usually tar-
geted to the most important projects of the organization and its external supplier’s
activities. For example, Professor April [APR 97] describes the results of one year
of SQA audits, at Bell Canada, and the findings. In internal audits, SQA promotes
defect prevention and encourages teams to always meet their customer commitments
while respecting internal rules. Software project audits are usually requested by man-
agement to ensure that the software team and contracted suppliers:

– know their duties and obligations toward the public, their employers, their cus-
tomers, and their colleagues;

http://www.asq.org

6.2 Types of Audits 215

– use the processes, practices, techniques, and normalized methods suggested by
the company;

– reveal any deficiencies and shortcomings in daily operations and try to identify
required corrective actions (CAs);

– are encouraged to develop a personal training plan for their professional skills;

– are monitored in the course of their work on high profile projects of the
company.

Any project manager or software developer can expect to be audited at some
point in their career. It is therefore important to understand this formal review process
and ensure one is always ready to be audited. It is also quite possible that you will
have to participate in an audit as a member of the auditing team. Software project
audits are described in ISO 12207, ISO 9001, CobiT [COB 12], and the CMMI.

6.2 TYPES OF AUDITS

6.2.1 Internal Audit

An internal audit, also called a first-party audit, can be useful for a software supplier
wanting to obtain an ISO 9001 certification. It is the least expensive approach to
prepare for conformity to an international standard.

ISO/IEC 17050-1 [ISO 04a] describes the requirements for a supplier conformity
statement that indicates that a product (including a service), process, management
system, individual, or organization meet the specified requirements originating from
a standard, a process model, a law, or regulation. The supplier conformity declaration
form shall identify: the issuer of the statement, the subject of the statement, standards
or specified requirements, and the person who signed the statement. Figure 6.1, taken
from ISO 17050-1, shows an example of a supplier conformity declaration form.

ISO/IEC 17050-2 [ISO 04b] indicates that the organization that declares confor-
mity must make supporting documentation available with this form.

A copy of this declaration can be displayed on the website of the organiza-
tion. The organization should also have put in place a procedure allowing for the
re-evaluation of the validity of the declaration, when necessary, should there be any
modifications to the development processes or to the standards used.

6.2.2 Second-Party Audit

We have already defined what a second-party audit is. For example, a client can
impose that suppliers demonstrate conformity to a standard. The customer can also
audit the supplier to verify conformity. The auditor can be an employee of the

216 Chapter 6 Software Audits

Figure 6.1 Example of a conformity declaration form [ISO 04a]. Source: Standards Council of
Canada.

customer, for example a member of the SQA department, or an external consultant
that has pertinent knowledge of the customer’s business domain.

It is typically the customer that incurs the cost of the audit (e.g., auditor’s trav-
elling expenses). The supplier will pay for his employee’s costs associated with par-
ticipating in the audit.

6.3 Audit and Software Problem Resolution According to ISO/IEC/IEEE 12207 217

6.2.3 Third-Party Audit

As described earlier in this chapter, a third-party audit is typically conducted by
an independent organization. We would like to emphasize that ISO does not offer
certification services per say. It does not deliver certificates either. It is the ISO
19011 [ISO 11g] standard entitled “Guidelines for auditing management systems”
and the ISO/IEC 17021-1 [ISO 15a] standard, entitled “Conformity assessment-
Requirements for bodies providing audit and certification of management systems-
Part 1: Requirements” that are used to assess the compliance to a standard such as
ISO 9001.

ISO 19011 includes a section that provides guidelines on the necessary competence of
auditors and describes their recommended evaluation process.

ISO 17021 states that “the certification organization must be a legal entity or part
of a legal entity to ensure that it can be legally held accountable of its certification
activities.”

It is important to note that a standard certification is not an obligation unless a
customer mandates it. An organization that is not accredited can be perfectly reliable.

An International Accreditation Association

The primary purpose of IAF is twofold. Firstly, to ensure that its accreditation body mem-
bers only accredit bodies that are competent to do the work they undertake and are not
subject to conflicts of interest. The second purpose of the IAF is to establish mutual recog-
nition arrangements, known as Multilateral Recognition Arrangements (MLA), between
its accreditation body members which reduces risk to a business and its customers by
ensuring that an accredited certificate may be relied upon anywhere in the world.

(www.iaf.nu)

6.3 AUDIT AND SOFTWARE PROBLEM RESOLUTION
ACCORDING TO ISO/IEC/IEEE 12207

ISO 12207 defines audit requirements and a decision management process.

let &hbox {char '046}www.iaf.nu
http://www.iaf.nu

218 Chapter 6 Software Audits

6.3.1 Project Assessment and Control Process

The purpose of the Project Assessment and Control process is [ISO 17]: to assess
if the plans are aligned and feasible; determine the status of the project, technical
and process performance; and direct execution to help ensure that the performance is
according to plans and schedules, within projected budgets, to satisfy technical objec-
tives. One important mandatory task of this process is the conduct of management and
technical reviews, audits, and inspections.

6.3.2 Decision Management Process

The decision management process follows the audit and the report distribution to
stakeholders which recommend the start of CAs.

The purpose of the Decision Management process is [ISO 17]: to provide a struc-
tured, analytical framework for objectively identifying, characterizing, and evaluat-
ing a set of alternatives for a decision at any point in the life cycle and select the
most beneficial course of action. One of the main activities of this process is named:
“Make and manage decisions.” This activity includes the following mandatory tasks
[ISO 17]:

– determine preferred alternatives for each decision;

– record the resolution, decision rationale, and assumptions;

– record, track, evaluate, and report decisions
◦ Note 1: This includes records of problems and opportunities and their dis-

position, as stipulated in agreements or organizational procedures and in a
manner that permits auditing and learning from experience.

ISO 12207 describes other types of audits to perform such as configuration audits
that will be presented in the configuration management chapter.

6.4 AUDIT ACCORDING TO THE IEEE 1028
STANDARD

In the previous chapter, we have seen that the IEEE 1028 describes the many differ-
ent types of reviews and audits as well as the procedures for the execution of these
reviews. Note that this standard explains how to conduct audits and not on their need
or how to use the audit reports.

6.4 Audit According to the IEEE 1028 Standard 219

Audit

An independent examination of a software product, software process, or set of software
processes performed by a third party to assess compliance with specifications, standards,
contractual agreements, or other criteria.

Note: An audit should result in a clear indication of whether the audit criteria have
been met.

IEEE 1028 [IEE 08b]

Table 6.2 summarizes the audit characteristics according to the IEEE 1028 stan-
dard. These characteristics will be explained in more detail in this section.

The purpose of the IEEE 1028 standard is to define systematic reviews and audits
that apply to user’s software acquisition, supplier, development, operation, and main-
tenance processes. The standard describes how to conduct an audit. It also describes
the minimum acceptable requirements for software audits, explaining:

– the audited team participation;

– the audit documented results;

– the documented procedure to conduct the audit.

To perform an audit, the auditor will have to read a set of documents (e.g., soft-
ware process, products) that will need to be available at audit time. The IEEE 1028
standard lists software products that are most likely to be audited. Table 6.3 shows a
partial list of these software products.

Table 6.2 Audit Characteristics According to IEEE 1028 [IEE 08b]

Characteristic Audit

Objective Independently evaluate conformance with objective standards and
regulations

Decision making Audited organization, initiator, acquirer, customer, or user
Change verification Responsibility of the audited organization
Recommended group

size
One to five people

Group attendance Auditors; the audited organization may be called upon to provide
evidence

Group leadership Lead auditor
Volume of material Moderate to high, depending on the specific audit objectives
Presenter Auditors collect and examine information provided by audited

organization

220 Chapter 6 Software Audits

Table 6.3 Examples of Software Project Products that can be Audited (Adapted from IEEE
1028 [IEE 08b])

Contracts

Backup
recovery
plans

Software design
descriptions

Software
requirements
specifications

Software test
documentation

Software project
management
plans

Customer or
user
representative
complaints

Unit
development
folders

Walk-through
reports

Request for
proposal

Operation and
user manuals

Installation
procedures

Risk
management
plans

Applicable
standards,
regulations,
plans, and
procedures

Disaster plans

Maintenance
plans

Contingency
plans

Development
environment

System build
procedures

Software
architecture
descriptions

Reports and test
data

Source code Software
verification
and validation
plans

Software
configuration
management
plans

Software user
documenta-
tion

The standard also addresses the topic of auditing software project processes. The
organization should prepare checklists that are specific to each process or product that
is audited.

6.4.1 Roles and Responsibilities

The software audit roles and responsibilities are (adapted from IEEE 1028 [IEE 08b]:

– an initiator: shall be responsible for the following activities:
a) decide upon the need for an audit;
b) decide upon the purpose and scope of the audit;
c) decide the software products or processes to be audited;
d) decide the evaluation criteria, including the regulations, standards, guide-

lines, plans, specifications, and procedures to be used for evaluation;
e) decide who will carry out the audit;
f) review the audit report;
g) decide what follow-up action will be required;
h) distribute the audit report.

The initiator may be a manager in the audited organization, a customer or
user representative of the audited organization, or a third party.

6.4 Audit According to the IEEE 1028 Standard 221

– a lead auditor: shall be responsible for the audit. He must ensure that the activity
is done according to the agreed upon audit rules and that it has met its objective.
He is responsible for the following activities:
a) prepare an audit plan;
b) choose and manage the audit team;
c) lead the team and note observations;
d) prepare the audit report;
e) note all deviations;
f) recommend CAs.

– the recorder: shall document anomalies, action items, decisions, and recom-
mendations made by the audit team.

– auditor(s): shall examine products, as defined in the audit plan. They shall
document their observations. All auditors shall be free from bias and influ-
ences that could reduce their ability to make independent, objective evalua-
tions, or they shall identify their bias and proceed with acceptance from the
initiator.

– the audited organization: shall provide a liaison to the auditors and shall pro-
vide all information requested by the auditors. When the audit is completed,
the audited organization should implement CAs and recommendations.

6.4.2 IEEE 1028 Audit Clause

As with other IEEE 1028 reviews, audits are described by a clause that contains the
following information [IEE 08b]:

– introduction to review: describes the objectives of the systematic review and
provides an overview of the systematic review procedures;

– responsibilities: defines the roles and responsibilities needed for the systematic
review.

– input: describes the requirements for input needed by the systematic review;

– entry criteria: describes the criteria to be met before the systematic review can
begin, including the following:
◦ authorization;
◦ initiating event;

– procedures: details the procedures for the systematic review, including the
following:
◦ planning the review;
◦ overview of procedures;
◦ preparation;
◦ examination/evaluation/recording of results;
◦ rework/follow-up;

222 Chapter 6 Software Audits

– exit criteria: describe the criteria to be met before the systematic review can be
considered complete;

– output: describes the minimum set of deliverables to be produced by the sys-
tematic review.

6.4.3 Audit Conducted According to IEEE 1028

The IEEE 1028 standard insists that before an audit can start, the initiator has
appointed an auditor and clarified the scope of the audit. The audited organization
should have communicated the audit procedure and the rules against which each
project team is audited. When the auditor has confirmed this situation, the auditor
will have to demonstrate that he is experienced, trained, and certified for this audit
scope.

The audit process, described in Figure 6.2, shows the recommended audit process
activities (adapted from IEEE 1028 [IEE 08b]):

– plan the audit: an audit plan is prepared and approved by the initiator;

– prepare and lead an opening meeting: an opening meeting, involving the audi-
tors and the audited organization, has the objective of explaining the scope,
audit process, and the targeted software process and products that will be
audited, the audit schedule, the expected contributions from individuals that
will be interviewed, resources involved (e.g., the meeting rooms, access to
quality records) as well as the information and documents that will be audited;

– prepare the audit: this activity reviews the audit plan to be completed, the
audited organization readiness, the access and preliminary review of the

PA 150
Archive
documents
of audit

Checklists
(optional)

PA 100
Audit
planning

.

PA 120
Prepare the
audit

PA 130
Conduct the
audit

PA 140
Follow-up

PA 110
Conduct the
opening
meeting

Audit
request

Figure 6.2 Audit process activities according to IEEE 1028.
Source: Adapted from Holland (1998) [HOL 98].

6.4 Audit According to the IEEE 1028 Standard 223

processes and products that will be audited, the organization life cycle and
standards, and the evaluation criteria before the audit start;

– collect the objective evidence: this is the heart of the audit and requires the
collection and analysis of evidence. The key findings will be presented to the
audited organization. Then a final report is produced and communicated to
the audit sponsor;

– audit follow-up: the audit sponsor communicates with the audited organization
to determine the required CAs.

In this figure, one activity is added to the IEEE 1028 current activity list: “Archive
documents of audit” to ensure that all the documentation associated with the audit
is kept. In fact, the audit documentation is useful as evidence that the organization
is conducting ISO 9001 audits and improvements, or for a future external audit for
example. Archived documents can include:

– the approved audit mandate;

– the audit plan;

– identification of participants;

– the minutes, opening and closing document;

– the auditor’s checklist;

– the audit report;

– the list of improvements needed;

– the CAs and their follow-up to closure.

Finally, note that audit activities, like all other software life cycle activities, can
be audited as well. In large organizations, many auditors conduct software project
audits according to a yearly audit plan.

The following text box presents an example of an extract from an audit report.

Acme Corporation
Audit Report

Date (YY-MM-DD):______________
Sponsor: ______________
Auditor: ______________

To support process improvement at Acme, the software quality assurance department has
conducted a process audit of the software development life cycle processes.

224 Chapter 6 Software Audits

Intention

To verify if the software activities and the results obtained comply with the mandated
documented processes and procedures and assess their effectiveness when executed.

Scope

The audit was conducted in the engineering department on the 15th of January 2017. The
audited project was entitled “Sustainable Environment”. The audited development life
cycle methodology was version 1.6.

Auditor(s): Mary Peters and John McCullen

Involved Personnel: Michael Phillips, Phillip Cordingley, Julia Perth (software engineer-
ing department)

The auditors are pleased to announce that personnel were extremely cooperative
during this audit.

Definitions

Finding: situation or condition that is a non-conformity towards a quality standard, a
design, a process, a procedure, a policy, a work order, a contract or other standard and
that would require an improvement request.

Note: the information presented by the auditors to the interviewees as preventive
measures do not require a formal improvement request. These topics can be verified, in
detail, in a follow-up audit.

Summary

In general, auditors have observed that the project did not have a structured plan. This
situation created the need for last minute interventions. The customer requirements were
not clearly defined.

After completing this audit, one (1) process change request was documented, four
(4) notes were generated and eight (8) improvement requests were raised. The conformity
percentage of this audit was 75.8 %.

Improvement Requests

Request number Description Assigned to department

ETS-2017-015 The requirements traceability
matrix was not updated during
the development process. It needs
to be updated frequently.

Software engineering

ETS-2017-016 Source code inspections were not
done during the project.

Software engineering

Findings

– Development process - Step SD-120 – write software requirements and test plan. The
requirements traceability matrix was not updated during the software development

6.5 Audit Process and the ISO 9001 Standard 225

project execution. This matrix will only be completed at the end of the project. This
matrix should be updated frequently to ensure that all the requirements have been allo-
cated and satisfied.

– Development process - Step SD-130 – specification review and approval. The speci-
fication document is still not approved since November 21, 2016. This augments the
project risks since the baseline of this artefact is not formalized.

Note

– Development process - Step SD-160 – test procedure development.

The test plan was finalised too late in the process and was presented to the cus-
tomer at the test readiness review only. The test plan should have been finalized at the
design review time. The causes reported were tight time constraints and inappropriate
planning.

6.5 AUDIT PROCESS AND THE ISO 9001 STANDARD

The ISO 9001 standard has made quality system audits popular. Never before has
a standard had so much attention and acceptance worldwide. Production plants
were the early adopters of the ISO 9001 standard. They were aware of the bene-
fit of having an independent quality certification as a competitive advantage. This
popularity grew when suppliers started asking for the certification before awarding
contracts.

Although there is a growing popularity of the use of ISO 9001 for production
organizations, it is not the case for service organizations such as software develop-
ers. These organizations have a more difficult time separating the final product from
the development life cycle processes [MAY 02]. IT requires an additional effort to
interpret ISO 9001 clauses in this context.

To ease the use of ISO 9001 for the service industry, including the software indus-
try, interpretation guides have been produced. For software, two sources are popular
for the interpretation of ISO 9001 [ISO 15]:

– ISO/IEC 90003 is the interpretation guide for software for the ISO 9001 stan-
dard [ISO 14]; with respect to internal audits, ISO 90003 provides the follow-
ing information:
◦ When software development organizations plan their development program,

it usually coordinates with the audit planning when projects and quality man-
agement systems are selected. Audit planning tries to select projects in order
to cover all the development life cycle processes for each phase;

◦ This could require an audit of different projects, at different development
life cycle phases, or the audit of only one project throughout its evolution
across life cycle phases. When the targeted project modifies its schedule, the

226 Chapter 6 Software Audits

internal audit calendar should also be reviewed to adjust audit dates or to
choose another project.

– the interpretive material (TickIT guide version 5.5 [TIK 07]) developed to train
and certify auditors of the ISO 9001 software quality system.

In the United Kingdom, TickITplus is a certification program that can allow multiple IT
standards to be covered by one certification arrangement—www.tickitplus.org/

These ISO 9001 interpretation guides clarify how each of the ISO 9001 clauses
apply to an organization that develops, maintains, and operates software products. It
is interesting to note that the ISO 90003 [ISO 14] interpretation guide is aligned with
ISO 12207.

We have discussed that improvement and conformity assessments will always
consider the assessment of the current processes used by an organization. The soft-
ware processes used by the organization will be compared to the standard clauses or to
process model practices like those of the CMMI. Capers Jones compares assessment
benchmarking to a “medical checkup” of the software organization; this is unavoid-
able for the identification of what is going right and what has to change. This “med-
ical checkup” is done using a list of the best practices of the industry. In the soft-
ware industry, this examination is used for benchmarking or to kick start a process
improvement program.

We have seen that in order to be ISO 9001 certified, an independent audit will
need to be performed. The certifier will need to use an audit process for this.

6.5.1 Steps of a Software Audit

Figure 6.3 presents a model of the key steps that have to be successfully executed in
order to obtain an objective assessment of the state of the software processes of an
organization.

The first step consists of identifying and interviewing the individuals that will be
part of the audit team. These individuals may need training and certifications to join
the assessment team.

The second step, once the team is in place, is to have an initial contact with the
audited organization either with a meeting or through a preliminary questionnaire.
This is followed by a meeting to agree to the scope of the audit, the processes that
will be reviewed, a proposed schedule, and the number of individuals involved. The
main objective of this step is to prepare everyone for the audit so it is not a surprise.
The project manager is then asked to send back the preliminary conformity assess-
ment and provide the security clearance to access the project documentation drives.
Questionnaire answers and a preliminary review of the project documents (e.g.,

let &hbox {char '046}www.tickitplus.org/
http://www.tickitplus.org/

6.5 Audit Process and the ISO 9001 Standard 227

1- Choice of assessors

2- Meeting/questionnaires
and assessment/audit plan

3- Questionnaire answers
analysis and documentation

review

4- Site visits
(reviews and interviews)

5- Findings (based on the
model or the standard used)

6- Graphical representation
of the process area profile

Figure 6.3 Major steps of a software audit or assessment [APR 08].

project management and technical documents) will allow the auditor to tailor the
choice of interviewees’ and solidify the audit schedule.

Next, we need to prepare for the audit that typically lasts 1 or 2 days. This fourth
step consists of visiting the site, making presentations, interviewing individuals, and
reviewing artifacts. During these 2 days, the inventory of interviews and documents
is kept up to date and findings are captured and rated.

Tips for Your Conduct when Being Audited and Interviewed

1) Answer directly and honestly.
Your responsibility is to provide the requested information. If you do not understand
the question just say so. If the question does not apply to your role or your project just
say so. Being honest is the best approach in audits.

2) Do not volunteer information that is not questioned.
Answer directly to the question asked. Resist discussing all kinds of other topics that
are not pertinent to the specific issue.

228 Chapter 6 Software Audits

3) Bring and show examples of the work.
Bring examples of the review topic to show how the process was executed, commu-
nicated, tracked.

4) Ask for help from others when necessary.
The project is being audited, not you. If you do not know the answer to a question,
refer to another person.

[OBR 09]

ISACA is the Information Systems Audit and Control Association. ISACA publishes the
CobiT guidelines that can be used to audit a software project: www.isaca.org

Using the information collected, initial findings are made and validated with the
participants. Professional judgment is required to determine if the execution of the
practices satisfies the reference standards or model. Once findings are validated and
ranked, the final report is produced. This takes approximately 10 days. It is sent to
the distribution list identified earlier in the audit plan. A last and optional step is to
help the team achieve compliance, if asked.

Finally, all the audit information is packaged and archived for future reference.
All the compliance data are also analyzed and saved.

Audit Findings

Results of the evaluation of the collected audit evidence against audit criteria.

Note 1: Audit findings indicate either conformity or non-conformity.

Note 2: Audit findings can lead to improvement opportunities or identification or
recording good practices.

Note 3: If the audit criteria are selected from legal or other requirements, the audit
finding is termed compliance or non-compliance.

Note 4: Adapted from ISO 9000:2005, definition 3.9.5.

ISO 19011 [ISO 11g]
Conformity

Fulfilment of a requirement.
ISO 9000 [ISO 15b]

Nonconformity

Non-fulfilment of a requirement.
ISO 9000 [ISO 15b]

let &hbox {char '046}www.isaca.org
http://www.isaca.org

6.5 Audit Process and the ISO 9001 Standard 229

All types of audits should publish their process and make it available.
Process audits should be conducted on a regular basis for two main reasons: first,

to ensure that practitioners use the processes of the organization and secondly to dis-
cover errors, omissions, or misunderstandings in the application of a process. Process
audits are also used to assess the degree of use and understanding of practitioners.
For example, a new document management process was introduced and practition-
ers were invited to produce and update documents using this new process. It is well
known that engineers are not very inclined to document their work. They often see
documentation as a “necessary evil.” Following is an example of an audit conducted
to evaluate the conformity of developers to the documentation management process
of an organization.

Document Management Process Audits

In a defense industry organization, one of the authors coordinated the documentation
of the document management process. A few months after its deployment to the engi-
neers, the QA department conducted an audit to measure the level of compliance to this
process.

As presented in the table below, results were not very good. After the published audit
report, management decided to send an instruction that all personnel should follow this
guideline. It also stated that a second audit would be planned to check on conformity
again. As we can see, the second audit showed a higher conformity rate.

The auditor, when conducting the second audit, gathered feedback from engineers.
This information was used by the owner of this process to improve it and to increase
the level of compliance to reach at least 80% of conformity of all activities in a future
audit.

Results of Two Process Conformity Audits

Document process activities
First audit

results
Second audit

results

Reviewer comments 38% 78%
Document approval matrix completed 24% 67%
Effort checklist completed 18% 33%
Document review checklist completed 5% 44%
Configuration management checklist completed 5% 27%
Document distribution list completed 38% 39%
Document formally approved 100% 100%

Laporte and Trudel (1998) [LAP 98]

230 Chapter 6 Software Audits

6.6 AUDIT ACCORDING TO THE CMMI

The Software Engineering Institute (SEI) has developed assessment methods to be
used in conjunction with its process models. A Software Process Assessment and a
Software Capability Evaluation (SCE) [BYR 96] are available for use. The SCE is
used for supplier selection to verify that contractual clauses are met.

Using the SCE for Supplier Evaluation

A USA agency had specified, in their subway transit contract with its main supplier,
that all the contractors involved, such as for the propulsion sub-system, be assessed and
demonstrate a minimum of CMM maturity level 2 using the SCE. An initial assessment
was done and action plans were developed so that all non-conforming suppliers achieve
this level within 24 months of contract signature. Each action plan was also reviewed and
approved by the customer. After this period, a second assessment was done to verify the
supplier’s conformity.

When the SEI updated its model to launch the CMMI for Development in early
2000, the SCE audits became less used. In the CMMI, audits are activities described
as part of the “process and product quality assurance.” This process area aims at
providing management with an objective state of the project’s software processes
and products. For the CMMI, audits are one of the many techniques used, similar to
inspections and walk-throughs, to conduct objective assessments. The CMMI states
what an objective assessment is in the Process and Product Quality Assurance process
area. To ensure objectivity, the following issues must be addressed [SEI 10a]:

– description of the reporting structure of the SQA to show its independence;

– establish and maintain clearly formulated assessment criteria:
◦ what is going to be assessed?
◦ when, or, how will the process be assessed?
◦ how will the assessment be conducted?
◦ who must be involved in the assessment?
◦ what product of an activity will be assessed?
◦ when and how will the product of an activity be assessed?

– use the formulated criteria to assess the conformity of the process descrip-
tions, standards, and procedures executed and for the product of an activity
assessment.

6.6 Audit According to the CMMI 231

6.6.1 SCAMPI Assessment Method

The SEI developed its own assessment method named SCAMPI (Standard CMMI
Appraisal Method for Process Improvement) to support its CMMI model implemen-
tation. This method can be used for improving your processes internally, for the selec-
tion of external suppliers or for the monitoring of processes. Concerning the improve-
ment of processes, this assessment method can be used for [SEI 06]:

– establishing a baseline of the strengths and weaknesses of the current
processes;

– determining the maturity level of the current processes;

– measuring the progress with regards to the last process assessment;

– generating inputs for the process improvement plan;

– preparing the organization for a customer assessment;

– auditing the life cycle processes.

To learn more about the SEI SCAMPI appraisal method, visit the following site: http://
resources.sei.cmu.edu/library/asset-view.cfm?assetid=5325

The following text box shows an extract of an evaluation report, using the SEI
software assessment method.

Excerpt from a Formal Evaluation Report of the ACME Corporation

Findings

Concerning the requirements management process area:

– an inconsistent process is used to transpose the system requirements to software
requirements;

– the design and coding are often started before the software requirements are defined;

– software requirements are inconsistently defined.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5325
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5325

232 Chapter 6 Software Audits

Explanation of the Findings

The requirements definition is the first step in a software development project. The whole
project depends on the quality of the requirements and how they were transmitted. If
the wrong requirements are used in the life cycle (e.g., system requirements, software
requirements, high-level design, detailed design, code, unit tests, integration, and system
testing and maintenance), the cost of corrective action increases at each stage of the life
cycle.

The evaluation team learned that the ACME Corporation’s engineers did not follow
a standard process to define requirements and their transmission to other stages of the life
cycle are not well communicated. The evaluation team also learned that the process should
ensure that the documentation is also transmitted in the development cycle to avoid over-
reliance on the software personnel. Such a process should also ensure the completeness,
clarity and accuracy of requirements with a level of detail appropriate to the level of the
document in which a requirement is defined. This means that the software requirement
defined in a system performance specification should be verifiable at the system level, a
software requirement defined in the system’s design specification must be verifiable at the
system integration and software requirements defined in the detailed design specification
should be verifiable in the code.

Design and coding activities are often carried out before the requirements are
defined. The evaluation team heard of situations where the requirements were devel-
oped after the code was written. The way the process is monitored is highly depen-
dent on the project manager and project engineers. They must be aware of the impor-
tance of following the process that must be taken into account when planning the
project.

The following text box shows another example of an improvement cycle in a
telecommunications company.

Example of a Mentoring Process Used at Bell Canada

As shown in the figure below, the audit activity, when it is aimed at improvement, is rarely
performed in isolation. Here is an example of the process, introduced at Bell Canada in
the 1990s, which describes all the interactions between learning, improving the process
and ensuring the compliance of the project to the local methodology that is supported by
tools. Project teams could rely on a mentoring service to help them better understand how
to properly use the internal methodology and tools.

6.7 Corrective Actions 233

Project teams

Process
conformity
audit teams

Post-audit
mentoring

service

IT Conformance measures

Process
improvement

service

T
oo

ls

M
et

ho
do

lo
gy

The next section presents the CAs that are implemented after a software audit.

6.7 CORRECTIVE ACTIONS

After an internal or external audit, an organization must perform CAs to correct the
observed deficiencies. It is also possible to treat the preventive actions, an incident
report, and customer complaints using the CA process.

Corrective Action

Action to eliminate the cause of a nonconformity and to prevent recurrence.

Note 1: There can be more than one cause for a nonconformity.

Note 2: Corrective action is taken to prevent recurrence whereas preventive action
is taken to prevent occurrence.

ISO 9000 [ISO 15b]
An intentional activity that realigns the performance of the project work with the project
management plan.

PMBOK® Guide [PMI 13]

Preventive Action

An intentional activity that ensures the future performance of the project work is aligned
with the project management plan.

PMBOK® Guide [PMI 13]

234 Chapter 6 Software Audits

A CA aims at eliminating potential causes of non-conformity, a defect, or any
other adverse event to prevent their recurrence. Although rectifying a problem focuses
on the correction of a very specific case, a CA eliminates the root cause of a problem.
CMMI has a process area named “Causal analysis and resolution” to identify and
eliminate root causes. The purpose of this process area is to identify causes of selected
outcomes and take action to improve process performance [SEI 10a].

6.7.1 Corrective Actions Process

The problems encountered when developing systems that include software, or that
occur during their operation, can come from defects in the software, in the develop-
ment process itself, or in the hardware of the system.

To facilitate the identification of problem sources and apply appropriate CAs, it
is desirable that a centralized system is developed to track issues through to resolution
and to determine their root cause.

Since the validation, monitoring, and problem resolution may require coordina-
tion of different groups within an organization, the SQAP should specify the groups
authorized to report/raise incident reports and CAs as well as for the submission of
unresolved issues to management.

The following text box is an excerpt from the IEEE 730 standard that describes
the requirements regarding this process.

Corrective and Preventive Action Process

A process for resolving software problems defined in the project plan or a separate process
documented in either the SQA plan or the organizational quality management plan. Non-
conformances are addressed by the project team using a defined Corrective Action (CA)
process which may be documented in the project plan, the SQA Plan, or the organizational
quality management plan. In response to a non-conformance, the project team proposes
a corrective action. SQA reviews each proposed corrective action to determine whether it
addresses the associated non-conformance. If the proposed corrective action does address
the non-conformance, SQA identifies appropriate effectiveness measures that determine
whether a proposed corrective action is effective in resolving the non-conformance. Once
a corrective action is implemented, SQA evaluates the related activity and determines
whether the implemented corrective action is effective.

IEEE 730 [IEE 14]

An organization must implement a CA process following the conduct of inter-
nal or external audits. This process should cover software products, agreements and
software development plans.

6.7 Corrective Actions 235

To facilitate the management of many non-compliances, it would be desirable to use a
software tool such as a spreadsheet or a database. In very small organizations, free issue-
tracking tools like Bugnet can do the job. In large organizations, you either need to develop
your own database or purchase a commercial tool (http://www.bugnetproject.com/).

A CA process, in a closed loop, may include the following elements:

– inputs: for example, an audit report, a non-compliance, or a problem report;

– activities:
◦ register non-conformities in the issue tracking tool used by the organization,
◦ analyze and validate the problem to ensure that the organization’s resources

are not wasted,
◦ classify and prioritize the issue/problem,
◦ analyze the problems to conduct trend analysis that can be identified and

addressed,
◦ propose a solution to the problem,
◦ solve the problem and ensure that the resolution does not cause other prob-

lems, or if the non-compliance issue cannot be resolved within the project,
refer it to the appropriate management level,

◦ verify the problem resolution,
◦ inform stakeholders of the problem resolution,
◦ archive the problem documentation,
◦ update the information in the issue tracking tool;

– outputs: for example, the resolution file, a corrected version of the software.

Figure 6.4 describes a problem resolution process.
Some organizations include a section in their problem report template where the

person responsible for the service, as the head of the development organization, must
propose a possible solution to correct the problem as well as a planned resolution date
(see Figure 6.5).

Once this information is stored in the tool, the SQA can track every issue through
to resolution and may sometimes have to intervene to remind the person responsible
that he has unresolved issues that have exceeded the registered deadline.

As an independent body, the SQA has an escalation mechanism in the organiza-
tion for raising the issue to a higher level in the event that the problem is not resolved.
Here is a three-level escalation mechanism:

– escalate to the first level: if CAs are not carried out in accordance with the com-
mitments, the SQA representative meets with the head of the software project

let &hbox {char '046}http://www.bugnetproject.com/
http://www.bugnetproject.com/

236 Chapter 6 Software Audits

Preparing the audit notification Allocating resources to support the audit

Audit to be performed

IAR closed/audit closed

Conducting the audit introduction

Conducting the audit

IAR to be issued
or raised to steering

committee

Generating IAR

Performing follow-up

Closing IAR

Initiating prompt improvement

Quality records

Yes

No

Permanent improvement
implemented?

Yes

Preparing the audit

Producing the audit report

Conducting the audit debriefing

Figure 6.4 Example of a problem resolution process.

6.7 Corrective Actions 237

Problem report

Priority:_______ Project name: ________ Date: _____

Process name: ________ Phase number: ___Raised by: _________________

Number of days to answer: ___________ Close date: _______

Number of days to fix this problem: _______

Finding: ___

Requirement/Standard impacted:

__

Immediate solution proposed:

__

Root cause: __

Permanent solution proposed:

__

Acceptance date of permanent solution: ______________________________

Follow-up action (if necessary):

Figure 6.5 Problem report and resolution proposal form.

to examine the plan to be implemented to ensure CAs, status of CAs and the
risk of not completing CAs. The parties negotiate and agree on CAs and new
deadlines for the implementation of CAs. The SQA representative documents
this agreement and obtains the signature of the head of the software project;

– escalate to the second level: if the head of the software project is not receptive
(to CA or the time limit), the SQA manager meets with the software project
manager to review the plan to implement CA, the status of CAs and the risk of
not completing CAs. The SQA manager documents decisions and obtains the
signature of the software project manager;

– escalate to third level: if the software project manager is not receptive (to CA
or the time limit), the SQA manager meets with senior management to discuss
a plan to initiate CAs. The SQA manager documents decisions and obtains the
signature of senior management.

238 Chapter 6 Software Audits

6.8 AUDITS FOR VERY SMALL ENTITIES

Very small entities (VSEs) have modest means and little time to devote to an audit.
However, many VSEs wish to be audited or assessed either to meet the requirements
of a client or to increase their brand both nationally and internationally. Thus, a VSE
could stand out from other VSEs and become an organization with which a client
could develop a business relationship.

When the ISO workgroup was mandated to develop the ISO 29110, a survey
was addressed to VSEs located in more than 32 countries. A large number (74%) of
VSEs that responded to the survey said that it was very important to them to obtain a
certification to improve their profile. A formal certification was requested by 40% of
VSEs that answered this survey [LAP 08].

In the chapter on standards, we introduced the ISO 29110 standard. The VSE
can, as described in this chapter, conduct an internal audit in accordance with ISO
17050. If the organization complies with ISO 29110, it may therefore declare itself
as conforming to this standard, as long as the auditor’s independence can be demon-
strated by the absence of a parallel activity to be audited, divergence or conflict of
interest.

VSEs also have access to external audits of second and third parties. An audit
by a second party can be performed by external auditors. In this way, a VSE can
demonstrate that an external auditor confirmed its conformity to ISO 29110. This
type of audit can be performed at a low cost to a VSE.

Recall that third-party audits are conducted by independent auditing organiza-
tions, such as regulatory authorities or bodies granting registration or certification.
The certification process is illustrated in Figure 6.6. It begins when a company con-
tacts a certification body to start the certification process. Once the auditor has deter-
mined that the VSE is willing to be audited, the auditor launches the audit: the prepa-
ration of the audit (e.g., document review, planning, and preparing the audit), the
implementation of the audit (e.g., conducting the opening meeting, reviewing docu-
ments, collecting and verifying information, producing findings and conclusions, and
conducting the closing meeting), the preparation and distribution of the audit report
and the end of the audit. Following the issuance of the audit certificate, the certifica-
tion body will perform, typically on an annual basis, a surveillance audit to ensure

On-going surveillance activities

Initial
certification

Expiry of
certification

Three-year certification cycle

Initial
certification

Application for
certification

Surveillance
audits

Recertification

Figure 6.6 ISO/IEC 29110 certification approach.

6.9 Audit and the SQA Plan 239

continued conformance. An audit for the renewal of the certification is conducted to
confirm continued conformance.

ISO 29110 was implemented in a Peruvian start-up of four people. The VSE was
created in 2012. After implementing the Basic profile, two processes were executed
in a 900-hour customer project [GAR 15]. Only 18% of the total effort consisted of
rework. The following text box describes the ISO 29110 third-party audit. The VSE
had more than 10 employees at the time of certification in 2014.

ISO 29110 Conformity Audit in Peru

The certification process was executed in two steps. During step 1, the existing docu-
mentation of the software development process was assessed. During the second step,
the implementation and execution of the ISO/IEC 29110 Project Management (PM) and
Software Implementation (SI) processes of the Basic profile were audited. At the end of
each step, the Brazilian registrar published an observation report.

The VSE received the auditors’ observations and corrective measures were taken.
The VSE technical team implemented the recommendations and procedures were updated
and distributed to the development team members.

The effort dedicated by the VSE for the first step of the audit, which does not include
the auditor’s travel expenses, was about $1000. The VSE invested 22 hours of work for
step 1.

For step 2 of the audit process, the auditor cost was $1200. The VSE invested
63 hours for step 2 of the audit.

Steps 1 and 2 of this audit were conducted in April 2014. In July 2014, a
Brazilian registrar delivered a 3-year conformity certificate for the PM and SI Basic pro-
file of ISO/IEC 29110. A first surveillance audit was done in 2015, a second in 2016, and
the recertification will be launched in 2017.

Garcia et al. (2015) [GAR 15]

After the successful audit of the Peruvian VSE, a local paper reported on this
event. Following this article, Peruvian companies contacted the VSE to know more
about the process and discuss business opportunities. Later, a large Peruvian insur-
ance company attributed a software development contract to this VSE. In 2017, this
VSE had 23 employees.

6.9 AUDIT AND THE SQA PLAN

The IEEE 730 standard [IEE 14] demands that the SQA activities of a project need
to be coordinated with audits and other life cycle processes required to ensure the
conformity and quality of the process and the product. It requires SQA to ensure
that the audit concerns have been well explained to the project teams and that they

240 Chapter 6 Software Audits

audit the software development activities periodically to determine consistency with
defined software life cycle processes. For this to happen, the organizational processes
must be published to the organization beforehand.

It also imposes that SQA, independent from the project teams, audit projects
periodically to determine conformance to defined project plans and assess the skill
and knowledge needs of the project and compare them to the skill and knowledge of
the organization’s staff to identify any gaps. Where projects involve external suppli-
ers, it is a good practice to conduct at least one compliance audit and include it in the
contract terms.

For the audit activities of the project, the IEEE 730 standard asks that the project
team be ready to answer the following questions:

– is a subcontractor or external supplier required by the contract? If yes, have
periodic reviews and audits been performed to determine if software products
fully satisfy contractual requirements?

– have any issues raised as part of these supplier audits been reviewed and
assessed for impact?

– have corrective/preventive action plans been developed for any non-
conformities identified during the supplier audit?

– have project non-conformances been recorded and appropriately resolved?

– have project CAs plans been established for items that did not meet the system
requirements?

For SQA, the following questions should be answered for each project identified
in the audit plan of the organization:

– has an appropriate and effective audit strategy been developed for the project?

– has an appropriate and effective audit strategy been implemented for the
project?

– has compliance of selected software work products, services or processes with
requirements, plans, and agreements been determined according to the audit
strategy?

– are audits conducted by an appropriate independent party?

– have the audit results been documented?

– have all issues detected during an audit been documented as non-
conformances?

– have all non-conformances been considered for CA?

– have all CAs that were implemented proven to be effective as determined by
effectiveness measures?

– has an appropriate justification been provided for each non-conformance not
requiring CA?

6.10 Presentation of an Audit Case Study 241

6.10 PRESENTATION OF AN AUDIT CASE STUDY

In this section, the result of project conformity audits completed at a US system devel-
opment location of Bombardier Transport, where Professor Laporte was involved, is
presented.

Software Engineering Performance Improvement at Bombardier Transport

[LAP 07a], [LAP 07b]
The performance of a subway signaling software development project was assessed,

by external assessors, twice between 2003 and 2006. The 2003 assessment created a base-
line or reference point for the progress observed in 2006. During these two visits, the same
assessment method was used to evaluate the software processes, the project performance,
and the organizational change management. This text describes the assessed organization,
explains the multidimensional methodology used to conduct the assessments as well as
the business objectives and the quantitative improvements achieved.

Context Description

At that time, Bombardier Transport had more than 30 software development locations
and more than 950 software engineers. The Total Transit Systems (TTS) division offers
transport solutions for cities and airports. The product portfolio contains a range of auto-
mated transport systems, monorails, light trains, and subways. The Pittsburgh division
had close to 100 software engineers locally with 30 located at the Bombardier Transport
in Hyderabad, India.

The Software Engineering Competence Center

Competence centers were aimed at lowering corporate technical risks and costs. The soft-
ware engineering competence center supported strategic initiatives. It conducted product
reviews and proposed actions to reduce risks. The competence center was asked to assess
the Pittsburgh software development organization.

Evaluation Methodology

The process dimension reuses a tailored version of the industry-proven CMM evaluation
methods. Depending on business needs (organizational and project list) and the scope of
the evaluation, the process areas of the CMM are prioritized (high/medium/low). Then,
an evaluation agenda is created using Bombardier SWE Process role names. The agenda
is then updated with the individuals involved in the project who are associated with those
roles. Communication is conducted in advance to ensure smooth participation and to man-
age expectations. During the collecting evidence step, an evaluation sheet is used to log
the gathered/analyzed data. This evaluation sheet is also used to establish the maturity
indicators employed in the site findings.

242 Chapter 6 Software Audits

Site Evaluation

Three phases were used to evaluate the site:

Planning phase:
– establishment of organizational scope
– visit preparation (agenda)
– information gathering (extended version only)
– team build-up

On-site phase:
– opening presentation
– collection of evidence (interviews, documentation reviews)
– documentation of the findings (strengths and weaknesses)
– site debriefing with management representatives

Assessment report writing phase:
– prepare site findings and recommendations report
– prepare interim and final reports

Process Evaluation

The table below summarizes the key process areas of the CMM® and how they relate
to a maturity level. To achieve a maturity level, an organization must have successfully
completed the practices for lower levels. For this evaluation, the six process areas located
at CMM level 2 were evaluated.

Result

Level Characteristic

Optimizing
(5)

Managed
(4)

Defined
(3)

Repeatable
(2)

Initial
(1)

Product quality planning;
tracking of measured
software process

Software quality management
Quantitative process management

Management oversight
and tracking of project;
stable planning and
product baselines

Key process areas

Ad hoc
(success depends
on heroes)

"People"

Productivity
& quality

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking & oversight
Software project planning
Requirements management

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

Risk

Software process defined
and institutionalized to
provide product quality
control

Continuous process
capability improvement

Process change management
Technology change management
Defect prevention

“The CMM model [PAU 95].”

6.10 Presentation of an Audit Case Study 243

The evaluation criteria provided the following results: a process area can either con-
form, partially conform of not conform to the CMM. The results of the first evaluation
are presented in the following table.

Result of the First Assessment

Process area Conformity level

Requirements management Conform
Software project planning Partially conform
Software project tracking and

oversight
Partially conform

Software configuration
management

Conform

Software quality assurance Conform
Software subcontractor

management
Partially conform

The team did not, during the second evaluation, assess processes since the software
processes at the Pittsburgh location had already formally been evaluated a few months
before as CMM level 3 compliant.

Evaluation of Performance

Performance measurement of organizational software processes, using the earned value
technique, contributes to achieving the business goals. The first step in implementing this
technique was to identify the performance measures already in use in the organization.
Then, the techniques were validated to assess their applicability, validity, and precision.
Finally, the collected data were used to assess performance. The elements considered
during this assessment were:

– the Cost Performance Index (CPI); measures performance and takes corrective action
when required, as well as compares performance with that of past projects. This indi-
cator is calculated by dividing the budget cost of work performed by the actual cost of
work performed;

– the Schedule Performance Index (SPI); measures performance and takes action to
realign the project schedule if needed. It is calculated by dividing the budget cost of
work performed by the budget cost of work scheduled;

– the Critical Ratio (CR) is the result of the following calculation: SPI × CPI;
◦ a CR < 0.9 or <1.2 means that the project is under control;
◦ a CR > 0.8 or <0.9 or >1.2 or <1.3 means that corrective measures are necessary;
◦ a CR < 0.8 or >1.3 means that both the scope and the estimate of this project need

to be completely reviewed.

244 Chapter 6 Software Audits

Results of the First Performance Evaluation

Project ID CPI SPI CR

Project A 0.72 0.97 0.7
Project B 0.93 0.86 0.8
Project C 1.0 1.0 1.0

Results of the Second Performance Evaluation

Project ID CPI SPI CR

Project D 0.88 0.67 0.59
Project E 1.22 0.96 1.17
Project C 0.93 1.01 0.94
Project F 1.04 0.75 0.78

Evaluating Organizational Change Management

The next table describes the questionnaires used from the American company IMA
(www.imaworldwide.com) to evaluate the change management practices in projects that
involve technological changes.

Change Management Questionnaire

Questionnaire name Description

Culture assessment Assessment of the fit between the desired change and the actual
organizational culture in order to identify potential barriers
and to leverage actual cultural strengths

Organizational
stress level

Evaluation of the priorities for resources in the organization

Implementation
history

Assessment of barriers and lessons learned from previous
change projects (since past problems are likely to recur, this
tool allows identification of the issues that need to be
managed for the change project to be successful)

Sponsor assessment Evaluation of the resources, reinforcement (e.g., motivation)
and communications commitments made and demonstrated
by the sponsor(s) of a change project

Change agent skills Evaluation of the skills and motivation of those responsible for
facilitating the implementation of organizational changes

Individual readiness Evaluation of the reasons why people may resist an
organizational change

let &hbox {char '046}www.imaworldwide.com
http://www.imaworldwide.com

6.10 Presentation of an Audit Case Study 245

This next table describes the results obtained following two on-site evaluations.

Results of Two Evaluations

Questionnaire name Ideal result
First evaluation

results
Second evaluation

results

Culture assessment 100 54 65
Organizational stress level Less than 200 752 700
Implementation history 100 62 64
Sponsor assessment 100 Not evaluated 90
Change agent skills 100 Not evaluated 66
Individual readiness 100 70 68

The next table describes the positive trend of the organization’s performance
indicators.

Organizational Performance Indicators

Indicators 2003 2006 Delta

Income 19.6M US$ 35.9M US$ +84 %
Productivity 194K US$ 264K US$ +36 %
Profitability 2.7M US$ 5.5M US$ +104 %
Number of employees 101 136 136 + 32 (India) +34 % +66 %

The evaluation team concluded that between 2003 and 2006 the organization devel-
oped and deployed many software processes, improved its capacity to manage change
and demonstrated that its process performance had a significant impact on the business
performance of the organization.

Some Recommendations:

– Deploy an Institutionalized Software Sizing Approach for New Projects
A shared software sizing technique is indispensable. We know that counting lines of
code is not always appropriate, but the site needs a software size measure to com-
pare project performance. This information can be used later to better estimate project
efforts, improving the predictability and profitability of future projects.

– Assimilate Lessons Learned in the Organizational Processes
Lessons learned are captured and stored on the organization intranet to allow managers
to browse through them when needed. Sadly, lessons learned were rarely used by other
projects. To try to promote their use, it is recommended that processes, procedures and
checklists be updated during the final project review where lessons learned are gener-
ated. Additionally, it would be possible to use lessons learned as part of peer reviews.

246 Chapter 6 Software Audits

– Improve the Peer Review Process
To improve the peer review effectiveness and defect detection rate, it is recommended
that an inspection process be deployed. Inspections are well known to identify defects.
It is recommended that the Bombardier Transport procedure entitled “BES Software
Peer Reviews” be adopted in the Pittsburgh site. This procedure conforms to IEEE
1028: Software Reviews and Audits standard. The adoption of an inspection process
should be relatively easy since the Pittsburgh site already conducts a less formal form
of peer review. Inspections also conform to the “Six Sigma” scheme of Bombardier
Transport and allows for a non-conformity cost reduction.

6.11 SUCCESS FACTORS

The following text boxes list factors that affect quality with regards to the software
audit.

Factors that Foster Software Quality

1) An organization that places quality before schedules and budgets.

2) A documented and public auditing process.

3) Prior training of personnel regarding audits.

4) Trained and certified auditors.

5) A professional audit approach for long-term improvement.

6) An organization that acts on audit recommendations.

7) Resources available to conduct corrective actions.

Factors that may Adversely Affect Software Quality

1) Surprise audits in projects that are already in trouble.

2) Unclear audit rules that are not thought out or understood by anyone.

3) Audits used for personal gain and politics.

4) Unclear development life cycle processes and untrained staff (e.g., on organizational
processes).

6.13 Exercises 247

5) Managers that, by their decisions and statements, send the message that real delivery
work has to be done and that we will take care of audit recommendations when we
have time.

6) Management that edits reports or pressures auditors to lessen the impacts of audit
report results.

7) Internal audits used to surprise and catch employees off-guard with a “QA police”
squad instead of teaming up to improve the processes.

8) Management that pays attention to audit reports the month before the annual ISO 9001
audit.

6.12 FURTHER READING

April A., Abran A., and Merlo E. Process assurance audits: Lessons learned. In:
Proceedings of ICSE 98, Kyoto, Japan, April 19–25, 1997.

Crawford S. G. and Fallah M. Software development process audits—A general
procedure. In: Proceedings of the 8th international conference on Software engineering,
London, UK, 1985, pp. 137–141.

Helgeson J.W. The Software Audit Guide. ASQ Quality Press, Milwaukee, WI, 2010.
Ouanouki R. and April A. IT process conformance measurement: A Sarbanes-Oxley

requirement. In: Proceeding of the IWSM Mensura, Palma de Mallorca, Spain, November
4–8, 2007. Available at: http://s3.amazonaws.com/publicationslist.org/data/a.april/ref-197/
1111.pdf

Van Gansewinkel V. Making quality assurance work (Audits), Professional Tester, April,
2003.

6.13 EXERCISES

6.1 A manager just heard that auditors will come and visit a software package acquisition
project team. How can you adequately prepare?

6.2 You have been promoted as the SQA specialist at the Acme Corporation. The manager
asks you to explain how to assess the quality of software projects quantitatively. Explain
what needs to be implemented first and then the assessment approach that can be used.

6.3 List the deliverables that can be reviewed during an audit.

6.4 The IEEE 1028 standard provides guidelines for the audit of software processes and
products. The organization should have ready-made checklists for each process and
product audited. Develop a checklist for the following products and processes:

a) a SQA plan;

b) an inspection process;

c) a design document;

d) a walk-through report;

e) source code.

http://s3.amazonaws.com/publicationslist.org/data/a.april/ref-197/1111.pdf
http://s3.amazonaws.com/publicationslist.org/data/a.april/ref-197/1111.pdf

248 Chapter 6 Software Audits

6.5 Describe the different characteristics between an audit and an inspection.

6.6 What training, education, and experience are necessary to play the lead quality auditor
role in a software audit?

6.7 Name the most popular ISO 9001 software interpretation guides. Why are they neces-
sary?

6.8 Draw a diagram which describes the typical steps of a software assessment and audit.

6.9 List the necessary support tools for software audits. Explain the two most complex
tools.

6.10 List the key success factors of an audit.

6.11 In a quantitative assessment of a deliverable, explain what a quality attribute is.

6.12 Your manager asks you to assess the quality of the requirements phase. Explain how
you can use the concepts of conformity evaluation for this life cycle phase.

Chapter 7

Verification and Validation

After completing this chapter, you will be able to:

– understand what is meant by verification and validation (V&V);

– understand the benefits and costs of applying V&V techniques;

– understand the traceability technique and its usefulness;

– learn about the IEEE 1012 V&V standard and models used in industry;

– understand the processes and activities of V&V;

– understand the activities of the software validation phase;

– learn how to develop and use a V&V checklist for your project;

– understand how to write a V&V plan for your project;

– learn about the V&V tools available;

– understand the relationship between V&V and the software quality assurance
plan.

7.1 INTRODUCTION

In an article about safety, Leveson [LEV 00] brilliantly explains the dangers of mod-
ern software-based systems. The following text box summarizes her thinking.

The introduction of new technologies, coupled with the increasing design complexity,
is starting to produce a change in the nature of accidents. Although accidents related to
equipment failure are reduced, system crashes are increasingly occurring. System acci-
dents occur during interactions between components (e.g., electromechanical, digital,
and human) rather than by the failure of an individual component. The increasing use of
software is closely linked to the increasing frequency of system crashes, since software

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

249

250 Chapter 7 Verification and Validation

usually controls the interactions between the components allowing virtually unlimited
complexity in the interactions between components.

These accidents often involve software that correctly implements the specified
behavior, but there was a misunderstanding about what this behavior should be. Soft-
ware related accidents are usually caused by deficient software requirements and not by
coding errors or software design problems.

Ensuring that the software meets its requirements or trying to make it more reliable
will not make it safer as the requirements at the outset could be deficient. Software can
be highly reliable and correct and be unsafe when:

– the software correctly implements its requirements, but its behavior is not safe from a
systemic point of view;

– the requirements do not specify certain behaviors required for system safety (conse-
quently the requirements are incomplete);

– the software has unforeseen behaviors (that are dangerous) beyond what has been spec-
ified in the requirements.

[LEV 00]

The introduction of innovative products associated with software that contain
an increasing number of functions often involves increasing the number of com-
puter processing units and size of software. For example, in the automobile sector,
over 60 small computers (named electronic control units (ECUs)) with more than
100 million lines of code from different suppliers are used in many car models [REI
04]. These networked ECUs control, amongst others, ignition, braking, the entertain-
ment system, and now autopilot and self-parking. Failure of some units will result in
recalls, dissatisfaction of customers, or deterioration in the performance of the vehi-
cle, whereas a failure with the autopilot, direction, acceleration, or braking system
could cause an accident, injury, or death.

“In a typical commercial development organization, the cost to ensure (which is the
assurance that the system works satisfactorily in terms of functional and non-functional
requirements in its operation environment) prototyping, testing and verification activities
can vary from 50% to 75% of the total development cost.”

Hailpern and Santhanam (2002) [HAI 02]

According to the IEEE 1012 standard for V&V [IEE 12], the goal of V&V
in software projects is to help the organization incorporate quality in the software

7.1 Introduction 251

throughout the software life cycle. The V&V process provides an objective evaluation
of software products and processes. It is a simple question of addressing quality dur-
ing development as opposed to trying to add quality to a product after its been built.

Often it is not possible, and perhaps seldom reasonable, to inspect all the fine
details of all the software products created during the development and maintenance
life cycle, particularly because of a lack of time and budget. Therefore, all organiza-
tions have to make certain compromises and this is where the software engineer is
expected to follow a rigorous process of justification and selection. Software teams
must establish V&V activities during the project planning phase, so as to choose the
techniques and approaches that will allow the products to have a proper level of V&V.
The choice of these activities and their priorities is based on assessing risk factors and
their potential impact. These V&V activities need to be added to the development
process of the project in order to reduce risks to an acceptable level.

In this chapter, we present V&V for software. First, we explain the concepts of
V&V and the intended benefits and costs. We then present the international standards
and models that define V&V activities or impose them in certain situations. We con-
tinue with the presentation of an inventory of the various V&V techniques available
as well as their utility to address the particular concerns of the software engineer. We
then present the typical contents of a V&V process. This is followed by a brief dis-
cussion on the importance of independent V&V (IV&V) in critical projects. We then
provide more detail for one of the V&V activities often required for safety: traceabil-
ity. Finally, we explain how to develop and use checklists.

Verification

Confirmation, through the provision of objective evidence, that specified requirements
have been fulfilled

ISO 9000
The process of evaluating a system or component to determine whether the products of a
given development phase satisfy the conditions imposed at the start of that phase.

The process of providing objective evidence that the system, software or hardware
and their related products conform to requirements (e.g., for correctness, completeness,
consistency, and accuracy) for all life cycle activities during each life cycle process (acqui-
sition, supply, development, operation, and maintenance); satisfy standards, practices and
conventions during life cycle processes; and successfully complete each life cycle activ-
ity and all the criteria for initiating succeeding life cycle activities. Verification of interim
work products is essential for proper understanding and assessment of the life cycle phase
product(s).

IEEE 1012 [IEE 12]

252 Chapter 7 Verification and Validation

Verification aims to show that an activity was done correctly (doing it right), in
accordance with its implementation plan and has not introduced defects in its output.
It can be done on successive intermediate states of a product that is the outcome of
an activity.

Validation

Confirmation, through the provision of objective evidence, that the requirements for a
specific intended use or application have been fulfilled.

Note 1 to entry: The objective evidence needed for a validation is the result of a
test or other form of determination such as performing alternative calculations or
reviewing documents.

Note 2 to entry: The word “validated” is used to designate the corresponding status.

Note 3 to entry: The use conditions for validation can be real or simulated.

ISO 9000
The process of evaluating a system or component during or at the end of the development
process to determine whether it satisfies specified requirements.

The process of providing evidence that the system, software, or hardware and its
associated products satisfy requirements allocated to it at the end of each life cycle activ-
ity, solve the right problem (e.g., correctly model physical laws, implement business rules,
and use the proper system assumptions), and satisfy intended use and user needs.

IEEE 1012 [IEE 12]

Validation is composed of a series of activities which start, early in the devel-
opment life cycle, with the validation of customer requirements. End-users or their
representatives will also evaluate the behavior of the software product in the target
environment, either real, simulated, or on paper.

Validation helps minimize the risk of developing the wrong items by ensuring
that the requirements are adequate and complete. Subsequently, it will be ensured
that these validated requirements are developed during the following phase, notably,
the specifications. Validation also ensures that the software does not do what it should
not do. This means that no unintended behavior should arise from it.

If quality assurance is the poor cousin of software development, validation has
the same relationship with V&V. While verification practices, such as testing, have a
very important place in academia and industry, we cannot say the same for validation
techniques. Validation techniques are often absent or ignored by developers and the
mandated development processes. Some organizations validate requirements early in
a project. Unfortunately, they will carry out some validation only at the very end.

7.1 Introduction 253

Requirements

Business
functions

and
performance

System
operational

testing

System
requirements

System
design

System
fabrication

System
testing

Verify
requirements’

allocation

Verify design’s
accuracy and
completeness

Validate performance against approved requirements

Validate performance against operational needs

Figure 7.1 V&V activities in the software development life cycle.

Occasionally, we find validation practices embedded at different stages of the devel-
opment cycle (as shown by Figure 7.1). The lines at the top of this figure indicate the
development cycle phases where validation activities can be performed.

Some organizations explicitly have a phase called software validation in their
software development process, and if they produce software that is integrated into a
system, they will also explicitly have a system validation phase. Figure 7.2 illustrates
this with a software life cycle named the V development life cycle process. It
illustrates, along the center arrow, that system and software validation plans that
will be executed during the validation phase originate from the system and software
specification phases. These plans will be updated throughout the development phases

Coding and
static analysis

Unit testing
Detailed
design

Software
integration

Software
validation

Preliminary
design

SW requirements
specification

System
specification

System
integration &

validation

System validation plan

System integration plan

Software validation plan

Integration plan

Test

Figure 7.2 A V software life cycle describing when system and software validations are executed.

254 Chapter 7 Verification and Validation

and will be used during the validation phases on the ascending line of activities
shown on the right hand side of the figure.

One reason for preparing these plans early in the development life cycle is that
validation activities may require special equipment or environments to perform the
validation of the system that includes software. It is possible that a testing environ-
ment also needs to be established. For example, the validation of an air traffic control
system that needs to operate in conditions where dozens of aircraft are in the air at the
same time may require validation of the system near a busy airport. This would enable
the validation of several functional and non-functional requirements of the system.

Figure 7.2 shows that system and software validation plans are developed dur-
ing the descending part of the development cycle in the V-shaped diagram. These
plans will be used during the subsequent phases of development to validate, among
other things, the system requirements and software requirements against the needs
and during the ascending part of the development cycle in the V-shaped diagram to
validate the software during the validation phase. Since the software is a component
of a system, it will be integrated with hardware or other software and subject to system
validation activities.

Difference Between Verification and Validation

To design a graphical user interface where requirements ask that color indicators be shown
to reflect the power level of certain connected devices, verification will check whether the
necessary indicators are all present. The goal of the validation will be, among other things,
to determine that the color indicators reflect the actual state of the power level of these
devices. If the agreement was to display the red color to indicate that the devices need
recharging and the displayed color is green, then the application does not do what it is
supposed to do. It does something, but not correctly!

You can see that validation can only be performed after the verification activities are
completed successfully. This avoids devoting effort too early in the process to validate a
software product that would be incomplete or may contain too many errors.

Several of the V&V techniques are of a similar nature. For example, tests are used to
perform V&V. Other examples of techniques include analysis, inspection, demonstration,
or simulation. One should choose the most appropriate technique for the least cost.

After identifying risks and the required V&V techniques, the V&V activities
need to be planned. In some projects, V&V activities are planned by a team
belonging to different parts of an organization, for example, system engineers,
software developers, supplier personnel, a risk manager, V&V or software quality

7.2 Benefits and Costs of V&V 255

assurance (SQA), software testers, a configuration manager, etc. The main objective
of the V&V activity will be to develop a detailed V&V plan for the project.

7.2 BENEFITS AND COSTS OF V&V

As we have mentioned above, the goal of V&V is to build quality into the software
early during its construction and not just try to fix this at the testing stage. Figure 7.3
shows an example of the software processes, in an American company, where defects
are injected. The figure shows that a large percentage of defects, approximately 70%,
are injected even before any line of code has been produced. It is therefore neces-
sary that we include techniques in the software life cycle that will allow for the early
detection and removal of these defects as close as possible to when they are created.
Additionally, good detection techniques will greatly reduce the costly rework associ-
ated with corrections, which is an important cause of schedule delays.

Figure 7.4 describes the defect detection effectiveness in an American company
[SEL 07]. These results originate from Northrop Grumman who collected data for
14 systems where 3418 defects where detected during 731 reviews. These systems
contained between 25,000 and 500,000 lines of code and the corresponding teams
ranged from 10 to 120 developers. This study shows that not only is it possible to
detect errors, but also to eliminate them in the same phase where they were produced.
For example, Figure 7.3, shows that 50% of the defects where injected in the require-
ments phase. Figure 7.4 also shows that 96% of these defects where eliminated in the
same phase.

System development phase

D
ef

ec
ts

 (
%

)

50.0%
45.0%
40.0%
35.0%
30.0%
25.0%
20.0%
15.0%
10.0%

5.0%
0.0%

49.1%

0.0%
2.3%

9.0%
12.1% 11.7%

2.5% 1.9%

10.6%

0.7% 0.1% 0.0%

Pro
po

sa
l

Exte
rn

al
re

q.
 so

ur
ce

Req
uir

em
en

ts

Pre
lim

ina
ry

 d
es

ign

Det
ail

ed
 d

es
ign

Cod
e

Unit
 te

st

SW
 ve

rif
ica

tio
n

Sup
po

rt
to

 I
& T

M
ain

te
na

nc
e

Ope
ra

tio
ns

SW
 in

te
gr

at
ion

 te
st

Figure 7.3 Example of software process phases where defects are injected [SEL 07].

256 Chapter 7 Verification and Validation
D

ef
ec

ts
 d

et
ec

te
d

/d
ef

ec
ts

in
je

ct
ed

 (
%

)

System development phase

0.0%

84.4%

96.0%100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%
0.0%

96.8%
94.2% 93.8%

100.0% 100.0% 100.0% 100.0% 95.8%

0.0%

89.2%

Pro
po

sa
l

Exte
rn

al
re

q.
 so

ur
ce

Req
uir

em
en

ts

Pre
lim

ina
ry

 d
es

ign

Det
ail

ed
 d

es
ign

Cod
e

Unit
 te

st

SW
 ve

rif
ica

tio
n

Sup
po

rt
to

 I
& T

M
ain

te
na

nc
e

Ope
ra

tio
ns All

SW
 in

te
gr

at
ion

 te
st

Figure 7.4 Percentage of the defects detected by the development process phase [SEL 07].

What can be learned from this figure is that it is possible to estimate the percent-
age of injected defects and to detect and correct a high percentage of them such that
they will not propagate from one phase to another. This process has been named the
error containment process. It is therefore possible to describe, in the quality plan of
the project, quantitative quality criteria concerning defect removal objectives at each
phase of the project.

Why is it important to correct defects where they are injected? As shown in Chap-
ter 2 (Figure 2.2), there is a compounding cost of a defect that is not corrected in the
phase where it is injected. For example, a defect that arises during the assembly phase
will cost three times more to fix than one that is corrected during the previous phase
(during which we should had been able to find it). It will cost seven times more to fix
the defect in the next phase (test and integration), 50 times more in the trial phase,
130 times more in the integration phase, and 100 times more when it is a failure for
the client and has to be repaired during the operational phase of the product.

We are able to test only a small fraction of all the possible states of complex software based
systems. For example, the software that is used for airplane collision avoidance systems,
which is embedded on every modern airplane, includes approximately 1040 states. Our

7.3 V&V Standards and Process Models 257

level of confidence about our ability to detect defects by only using test techniques is still
very limited. We therefore have to use other methods and techniques to ensure the safe
functioning of systems that include software.

Leveson (2000) [LEV 00]

7.2.1 V&V and the Business Models

We recall here the main business models used by the software industry that were
introduced in Chapter 1 [IBE 02]:

– Custom systems written on contract: The organization makes profits by selling
tailored software development services for clients (e.g., Accenture, TATA, and
Infosys).

– Custom software written in-house: The organization develops software to
improve organizational efficiency (e.g., your current internal IT organization).

– Commercial software: The company makes profits by developing and selling
software to other organizations (e.g., Oracle and SAP).

– Mass-market software: The company makes profits by developing and selling
software to consumers (e.g., Microsoft and Adobe).

– Commercial and mass-market firmware: The company makes profits by selling
software in embedded hardware and systems (e.g., digital cameras, automobile
braking system, airplane engines).

These business models help us to understand the risks associated with each sit-
uation. V&V techniques can be used to detect defects and reduce these risks. The
project manager, supported by SQA, will choose, budget and plan the adequate V&V
practices for his project commensurate to the risks faced. The mass-market business
model and embedded systems use these techniques extensively.

7.3 V&V STANDARDS AND PROCESS MODELS

The most important standards and process models that describe required processes
and practices for V&V are presented next: the ISO 12207 [ISO 17], the IEEE 1012
[IEE 12], and the CMMI®. Some standards will go as far as to recommend, for criti-
cal software, that some programming languages be avoided. For example, a railway
control software standard forbids that programmers use the “GoTo” programming
instruction and that they remove “dead code” before the final delivery of the product.
In the next section, the IEEE 1012 standard is explained, then other standards will be
briefly covered.

258 Chapter 7 Verification and Validation

7.3.1 IEEE 1012 V&V Standard

The IEEE 1012—Standard for System and Software Verification and Validation [IEE
12] is applicable to the acquisition, supply, development, operation and maintenance
of systems, software, and hardware. This standard is applicable to all types of life
cycles.

7.3.1.1 Scope of IEEE 1012

IEEE 1012 addresses all the life cycle processes of systems and software. It is appli-
cable to all types of systems. In this standard, the V&V processes determine whether
the products completed by a specific development activity meet the requirements of
their intended use and the corresponding end-user needs. This assessment can include
analysis, evaluation, reviews, inspections, and testing of the products and the devel-
opment activity.

The verification process provides objective evidence that the system, software,
or hardware and its associated products [IEE 12]:

– conform to requirements (e.g., for correctness, completeness, consistency, and
accuracy) for all life cycle activities during each life cycle process (acquisi-
tion, supply, development, operation, and maintenance); refer to the quality
characteristics of requirements listed in section 1.3.1 of Chapter 1;

– satisfy standards, practices, and conventions during life cycle processes;

– successfully complete each life cycle activity and satisfy all the criteria for
initiating succeeding life cycle activities.

The validation process provides evidence that the system, software, or hardware
and its associated products [IEE 12]:

– satisfy requirements allocated to it at the end of each life cycle activity;

– solve the right problem (e.g., correctly model physical laws, implement busi-
ness rules, and use the proper system assumptions);

– satisfy intended use and user needs.

7.3.1.2 Purpose of IEEE 1012

The intention of this standard is to perform the following [IEE 12]:

– establish a common framework for all the V&V processes, activities and tasks
in support of the system, software, and hardware life cycle processes;

– define the V&V tasks, required inputs, and required outputs in each life cycle
process;

– identify the minimum V&V tasks corresponding to a four-level integrity
scheme;

– define the content of the V&V Plan.

7.3 V&V Standards and Process Models 259

7.3.1.3 Field of Application

IEEE 1012 applies to all types of systems. When executing V&V for a system, soft-
ware, or hardware element, it is important to pay special attention to the interactions
with the system.

A system provides the capacity to satisfy a need or an objective by combin-
ing one or more of the following elements: processes, hardware, software, facilities,
and human resources. These relationships require that the V&V processes address
interactions with all of the system elements. Since software interconnects all the key
elements of a digital system, the V&V processes also examine the interactions with
every key component of the system to determine the impact of each element on the
software. The V&V processes take the following system interactions into account
[IEE 12]:

– environment: determines that the system correctly accounts for all conditions,
natural phenomena, physical laws of nature, business rules, and physical prop-
erties and the full range of the system operating environment.

– operators/users: determines that the system communicates the proper sta-
tus/condition of the system to the operator/user and correctly processes all
operator/user inputs to produce the required results. For incorrect operator/user
inputs, assure that the system is protected from entering into a dangerous or
uncontrolled state. Validate that operator/user policies and procedures (e.g.,
security, interface protocols, data representations, and system assumptions) are
consistently applied and used across each component interface.

– other software, hardware, and systems: determines that the software or hard-
ware component interfaces correctly with other components in the system in
accordance with requirements and that errors are not propagated between com-
ponents of the system.

7.3.1.4 Expected Benefits of V&V

The expected benefits of V&V are [IEE 12]:

– facilitate early detection and correction of anomalies;

– enhance management insight into process and product risks;

– support the life cycle processes to assure conformance to program perfor-
mance, schedule, and budget;

– provide an early assessment of performance;

– provide objective evidence of conformance to support a formal certification
process;

– improve the products from the acquisition, supply, development, and mainte-
nance processes;

– support process improvement activities.

260 Chapter 7 Verification and Validation

7.3.2 Integrity Levels

IEEE 1012 uses integrity levels to identify V&V tasks that should be executed
depending on the risk. High integrity level system and software require more
emphasis on V&V processes as well as a more rigorous execution of the V&V tasks
in the project.

Integrity Levels

A value representing project-unique characteristics (e.g., complexity, criticality, risk,
safety level, security level, desired performance, and reliability) that defines the impor-
tance of the system, software, or hardware to the user.

IEEE 1012

Table 7.1 lists the IEEE 1012 definition of each of the four integrity levels and
their expected consequences.

Table 7.2 presents an example of a four level integrity framework that takes
into account the notion of risk. It is based on the possible consequences and risk
mitigation.

Table 7.3 illustrates the risk-based framework using the four levels of integrity
and their potential consequences described in Tables 7.1 and 7.2. Each cell of
Table 7.3 attributes an integrity level on the basis of the potential consequence of
a defect and its probability of occurring in an operating state that contributes to the
failure. Some of the cells in this table reflect more than one integrity level. This is
an indication that the final assignment of the integrity level by a project team can be
selected to reflect the system requirements and the need for risk mitigation.

Table 7.1 Definition of Consequences [IEE 12]

Consequence Definition

Catastrophic Loss of human life, complete mission failure, loss of system security
and safety, or extensive financial or social loss.

Critical Major and permanent injury, partial loss of mission, major system
damage, or major financial or social loss.

Marginal Severe injury or illness, degradation of secondary mission, or some
financial or social loss.

Negligible Minor injury or illness, minor impact on system performance, or
operator inconvenience.

7.3 V&V Standards and Process Models 261

Table 7.2 Integrity Levels and the Description of Consequences [IEE 12]

Software
integrity
level Description

4 An error to a function or system feature that causes the following:
– catastrophic consequences to the system with reasonable, probable, or

occasional likelihood of occurrence of an operating state that contributes to
the error;

or
– critical consequences with reasonable or probable likelihood of occurrence

of an operating state that contributes to the error.

3 An error to a function or system feature that causes the following:
– catastrophic consequences with occasional or infrequent likelihood of

occurrence of an operating state that contributes to the error;
or
– critical consequences with probable or occasional likelihood of occurrence

of an operating state that contributes to the error;
or
– marginal consequences with reasonable or probable likelihood of

occurrence of an operating state that contributes to the error.

2 An error to a function or system feature that causes the following:
– critical consequences with infrequent likelihood of occurrence of an

operating state that contributes to the error;
or
– marginal consequences with probable or occasional likelihood of

occurrence of an operating state that contributes to the error;
or
– negligible consequences with reasonable or probable likelihood of

occurrence of an operating state that contributes to the error.

1 An error to a function or system feature that causes the following:
– critical consequences with infrequent likelihood of occurrence of an

operating state that contributes to the error;
or
– marginal consequences with occasional or infrequent occurrence of an

operating state that contributes to the error;
or
– negligible consequences with probable, occasional, or infrequent likelihood

of occurrence of an operating state that contributes to the error.

262 Chapter 7 Verification and Validation

Table 7.3 Example of Probability Combinations of Integrity Levels and Consequences
[IEE 12]

Error
Likelihood of occurrence of an operating state that contributes to the

error (decreasing order of likelihood)

Consequence Reasonable Probable Occasional Infrequent

Catastrophic 4 4 4 or 3 3
Critical 4 4 or 3 3 2 or 1
Marginal 3 3 or 2 2 or 1 1
Negligible 2 2 or 1 1 1

Tools that generate or translate source code (e.g., compilers, optimizers, code
generators) are characterized by the same integrity level as the software they are used
for. As a general rule, the integrity level assigned to a project should be the highest
integrity level of any of the components of a system, even if there is only one critical
component.

The integrity level assignation process should be consistent and reassessed
throughout the project development life cycle. The rigor and intensity level of the
V&V and documentation activities in the project should be commensurate to its
integrity level. As the integrity level of a project lowers, the rigor and intensity
level of V&V should also be diminished accordingly. For example, a risk analysis
conducted for a project at integrity level 4 will be formally documented and will
investigate failures at the module level, while risk analysis at integrity level 3 could
assess only important failure scenarios and be documented informally during a
design review process.

The four-level integrity framework is essentially used for the V&V practices
recommended by IEEE 1012. The next section provides an example of V&V practices
recommended for the software requirements activity.

7.3.3 Recommended V&V Activities for Software
Requirements [IEE 12]

The recommended V&V activities for software requirements address functional and
non-functional software requirements, interface requirements, system qualification
requirements, security and safety, data definition, user documentation, installation,
acceptance, operation, and ongoing maintenance of the software. The V&V test plan-
ning is initiated at the same time as V&V activities for software requirements and
continues throughout many other V&V activities.

The objectives of the V&V activities for software requirements are to ensure that
they are correct, complete, accurate, testable and consistent with the system software
requirements. The V&V effort for software requirements, for any integrity level, shall
perform:

7.4 V&V According to ISO/IEC/IEEE 12207 263

– requirements evaluation;

– interface analysis;

– traceability analysis;

– criticality analysis;

– software qualification test plan V&V;

– software acceptance test plan V&V;

– hazard analysis;

– security analysis;

– risk analysis.

Qualification

Process of demonstrating whether an entity is capable of fulfilling specified requirements.
ISO 9000

The following table, presented in the IEEE 1012, indicates the minimum V&V
tasks that must be executed at each integrity level. For example, concerning the trace-
ability analysis task, the standard indicates an “X” when this task is recommended
(e.g., for three integrity levels shown in Table 7.4). Alternatively, safety analysis is
recommended for levels 3 and 4 only.

Table 7.4 Minimum V&V Tasks by Integrity Level

Integrity level

Minimum V&V tasks 1 2 3 4

Traceability analysis X X X
Security analysis X X

Source: Adapted from IEEE (2012) [IEE 12].

Table 7.5 describes the V&V tasks recommended for the traceability analysis of
software requirements.

7.4 V&V ACCORDING TO ISO/IEC/IEEE 12207

The ISO 12207 [ISO 17] standard also presents the requirements for V&V processes.
We will not describe all the details here but provide a high level view of the V&V
processes, their purpose, and outcomes.

264 Chapter 7 Verification and Validation

Table 7.5 Description of the Traceability Task [IEE 12]

Requirements for V&V (Process: Development)

V&V tasks Required inputs Required outputs

Traceability analysis
Trace the software requirements

(SRS and IRS) to the system
requirements (concept
documentation) and the
system requirements to the
software requirements.

Analyze identified relationships
for correctness, consistency,
completeness, and accuracy.
The task criteria are as
follows:

– Correctness
Validate that the relationships
between each software
requirement and its system
requirement are correct.

– Consistency
Verify that the relationships
between the software and
system requirements are
specified to a consistent level
of detail.

– Completeness
◦ Verify that every software

requirement is traceable to a
system requirement with
sufficient detail to show
conformance to the system
requirement.

◦ Verify that all system
requirements related to
software are traceable to
software requirements.

– Accuracy
Validate that the system
performance and operating
characteristics are accurately
specified by the traced
software requirements.

Concept documentation
(system requirements)

Software requirements
specifications (SRS)

Interface requirements
specifications (IRS)

Task report(s)—
Traceability

analysis
Anomaly

report(s)

7.4 V&V According to ISO/IEC/IEEE 12207 265

7.4.1 Verification Process

The purpose of the verification process is to provide objective evidence that a system
or system element fulfills its specified requirements and characteristics.

The verification process identifies the anomalies (errors, defects, or faults) in
any information item (e.g., system/software requirements or architecture description),
implemented system elements, or life cycle processes using appropriate methods,
techniques, standards, or rules. This process provides the necessary information to
determine resolution of identified anomalies.

As a result of the successful implementation of the verification process
[ISO 17]:

– constraints of verification that influence the requirements, architecture, or
design are identified;

– any enabling systems or services needed for verification are available;

– the system or system element is verified;

– data providing information for corrective actions are reported;

– objective evidence that the realized system fulfills the requirements, architec-
ture, and design is provided;

– verification results and anomalies are identified;

– traceability of the verified system elements is established.

7.4.2 Validation Process

The purpose of the validation process is to provide objective evidence that the system,
when in use, fulfills its business or mission objectives and stakeholder requirements,
achieving its intended use in its intended operational environment.

The objective of validating a system or system element is to acquire confidence
in its ability to achieve its intended mission, or use, under specific operational condi-
tions. Validation should be approved by the stakeholders of the project. This process
provides the necessary information so that identified anomalies can be resolved by
the appropriate technical process where the anomaly was created.

As a result of the successful implementation of the validation process [ISO 17]:

– validation criteria for stakeholder requirements are defined;

– the availability of services required by stakeholders is confirmed;

– constraints of validation that influence the requirements, architecture, or design
are identified;

– the system or system element is validated;

– any enabling systems or services needed for validation are available;

266 Chapter 7 Verification and Validation

– validation results and anomalies are identified;

– objective evidence that the realized system or system element satisfies stake-
holder needs is provided;

– traceability of the validated system elements is established.

7.5 V&V ACCORDING TO THE CMMI MODEL

Another perspective of V&V can be seen in process models like the CMMI. The
staged representation of the CMMI for Development [SEI 10a] has two process areas,
at maturity level 3, dedicated to V&V. Preparation for verification is the first step
suggested by the CMMI. It consists of selecting the life cycle phase outputs and the
methods chosen for each product, in order to prepare the verification activity, or envi-
ronment, depending on the specific needs of the project. It also suggests that verifi-
cation success criteria and an iterative procedure be put in place, in parallel to the
product design activities.

The purpose of verification is to ensure that selected work products meet their
specified requirements. The verification process area includes the following specific
goals (SG) and specific practices (SP) [SEI 10a]:

SG 1 Prepare for verification

SP 1.1 Select work products for verification,
SP 1.2 Prepare the verification environment,
SP 1.3 Establish verification procedures criteria;

SG 2 Perform peer reviews

SP 2.1 Prepare for peer reviews,
SP 2.2 Conduct peer reviews,
SP 2.3 Analyze peer review data;

SG 3 Verify selected work products

SP 3.1 Perform verification,
SP 3.2 Analyze verification results.

CMMI-DEV recommends inspections and walk-throughs for peer reviews as
they have been described in a previous chapter.

The purpose of validation is to demonstrate that a product or product compo-
nent fulfills its intended use when placed in its intended environment. The validation
process area includes the following SG and SP [SEI 10a]:

SG 1 Prepare for validation

SP 1.1 Select products for validation,
SP 1.2 Establish the validation environment,
SP 1.3 Establish validation procedures and criteria;

7.6 ISO/IEC 29110 and V&V 267

SG 2 Validate product or product components

SP 2.1 Perform validation,
SP 2.2 Analyze validation results.

Validation can be applied to all aspects of the product within its target operational
environment: operation, training and maintenance and support. The validation should
be executed in a real operational environment with actual data volumes.

Example of Recommended CMMI Validation Methods

– discussions with end-users, perhaps in the context of a formal review;

– prototype demonstrations;

– functional demonstrations (for example, system, hardware units, software, service doc-
umentation and user interfaces);

– pilot use of training materials;

– tests of products and product components by end-users and other relevant stakeholders;

– incremental delivery of working and potentially acceptable product;

– analyses of product and product components (e.g., simulations, modeling, user analy-
ses).

Software Engineering Institute (2010) [SEI 10a]

V&V activities are often executed together and can use the same environment.
End-users are usually invited to conduct the validation activities.

7.6 ISO/IEC 29110 AND V&V

The ISO 29110 standard for very small entities has already been introduced. Ele-
ments of ISO 12207 V&V processes have been used to develop ISO 29110 standards
and guides. This section shows how these very small organizations can conduct V&V
using one of the four recommended profiles: the ISO 29110 Basic profile. This profile
describes two processes: a project management (PM) process and a software imple-
mentation (SI) process.

One of the seven objectives of a PM process is to prepare a project plan describing
the activities and tasks for the development of a software for a specific customer.
Required tasks and resources are sized and estimated early on. In this plan, V&V tasks

268 Chapter 7 Verification and Validation

are described and are reviewed between the development team and the customer, and
then approved.

One of the objectives is that the V&V tasks, for each identified work product,
be done according to stated exit criteria to ensure the coherence between the outputs
and the inputs of each development task. Defects are identified and corrected and the
quality records stored in the V&V report.

Table 7.6 lists the V&V tasks. The table shows the role of the person execut-
ing the task, a brief description of the task, the input and output, and their states (in
brackets). The following acronyms are used for roles: TL for technical lead, AN for
analyst, PR for programmer, CUS for customer, and DES for designer. Table 7.6 is
limited to describing only the first task in detail and then lists only the subsequent
task names.

ISO 29110 Basic profile imposes a minimum number of V&V tasks to ensure
that the end product will meet the requirements and needs of the customer even with
a small budget.

ISO 29110 also suggests that a verification result file be updated in order to record
the V&V activity results. Table 7.7 shows an example of the proposed format for this
important project quality record.

7.7 INDEPENDENT V&V

IV&V are V&V activities conducted by an independent organization. This can be
used to supplement internal V&V and is often used for very critical software: medical
devices, metro and railway control, and airplane navigation systems.

Independent Verification and Validation (IV&V)

V&V performed by an organization that is technically, managerially, and financially inde-
pendent of the development organization.

IEEE 1012 [IEE 12]

Technical independence requires that the V&V effort use personnel who are not
involved in the development of the system or its elements. Managerial independence
requires that the responsibility for the IV&V effort be vested in an organization
separate from the development and program management organizations. Financial
independence requires that control of the IV&V budget be vested in an organization
independent of the development organization.

Ta
bl

e
7.

6
V

&
V

Ta
sk

L
is

to
f

th
e

Im
pl

em
en

ta
tio

n
Pr

oc
es

s
of

IS
O

29
11

0
[I

SO
11

e]

R
ol

e
Ta

sk
lis

t
In

pu
tw

or
k

pr
od

uc
ts

O
ut

pu
tw

or
k

pr
od

uc
ts

A
N

T
L

SI
.2

.3
V

er
if

y
an

d
ob

ta
in

ap
pr

ov
al

of
th

e
R

eq
ui

re
m

en
ts

sp
ec

ifi
ca

tio
n.

V
er

if
y

th
e

co
rr

ec
tn

es
s

an
d

te
st

ab
ili

ty
of

th
e

re
qu

ir
em

en
ts

sp
ec

ifi
ca

tio
n

an
d

its
co

ns
is

te
nc

y
w

ith
th

e
pr

od
uc

td
es

cr
ip

tio
n.

A
dd

iti
on

al
ly

,r
ev

ie
w

th
at

re
qu

ir
em

en
ts

ar
e

co
m

pl
et

e,
un

am
bi

gu
ou

s
an

d
no

tc
on

tr
ad

ic
to

ry
.

T
he

re
su

lts
fo

un
d

ar
e

do
cu

m
en

te
d

in
a

ve
ri

fic
at

io
n

re
su

lts
an

d
co

rr
ec

tio
ns

ar
e

m
ad

e
un

til
th

e
do

cu
m

en
ti

s
ap

pr
ov

ed
by

A
N

.
If

si
gn

ifi
ca

nt
ch

an
ge

s
w

er
e

ne
ed

ed
,i

ni
tia

te
a

ch
an

ge
re

qu
es

t.

R
eq

ui
re

m
en

ts
sp

ec
ifi

ca
tio

ns
Pr

oj
ec

tp
la

n

V
er

ifi
ca

tio
n

re
su

lts
R

eq
ui

re
m

en
ts

sp
ec

ifi
ca

tio
n

[v
er

ifi
ed

]
C

ha
ng

e
re

qu
es

t
[i

ni
tia

te
d]

C
U

S
A

N
SI

.2
.4

V
al

id
at

e
an

d
ob

ta
in

ap
pr

ov
al

of
th

e
R

eq
ui

re
m

en
ts

Sp
ec

ifi
ca

tio
n

V
al

id
at

e
th

at
re

qu
ir

em
en

ts
sp

ec
ifi

ca
tio

n
sa

tis
fie

s
ne

ed
s

an
d

ag
re

ed
up

on
ex

pe
ct

at
io

ns
,i

nc
lu

di
ng

th
e

us
er

in
te

rf
ac

e
us

ab
ili

ty
.

T
he

re
su

lts
fo

un
d

ar
e

do
cu

m
en

te
d

in
a

va
lid

at
io

n
re

su
lts

an
d

co
rr

ec
tio

ns
ar

e
m

ad
e

un
til

th
e

do
cu

m
en

ti
s

ap
pr

ov
ed

by
th

e
C

U
S.

R
eq

ui
re

m
en

t
Sp

ec
ifi

ca
tio

ns
[v

er
ifi

ed
]

V
al

id
at

io
n

re
su

lts
R

eq
ui

re
m

en
t

sp
ec

ifi
ca

tio
ns

[v
al

id
at

ed
]

A
N

D
E

S
SI

.3
.4

V
er

if
y

an
d

ob
ta

in
ap

pr
ov

al
of

th
e

So
ft

w
ar

e
D

es
ig

n.
V

er
if

y
co

rr
ec

tn
es

s
of

so
ft

w
ar

e
de

si
gn

do
cu

m
en

ta
tio

n,
its

fe
as

ib
ili

ty
,a

nd
co

ns
is

te
nc

y
w

ith
th

ei
r

re
qu

ir
em

en
t

sp
ec

ifi
ca

tio
n.

V
er

if
y

th
at

th
e

tr
ac

ea
bi

lit
y

re
co

rd
co

nt
ai

ns
th

e
ad

eq
ua

te
re

la
tio

ns
hi

ps
be

tw
ee

n
re

qu
ir

em
en

ts
an

d
th

e
so

ft
w

ar
e

de
si

gn
el

em
en

ts
.T

he
re

su
lts

fo
un

d
ar

e
do

cu
m

en
te

d
in

a
ve

ri
fic

at
io

n
re

su
lts

.
R

es
ul

ts
an

d
co

rr
ec

tio
ns

ar
e

m
ad

e
un

til
th

e
do

cu
m

en
ti

s
ap

pr
ov

ed
by

D
E

S.
If

si
gn

ifi
ca

nt
ch

an
ge

s
ar

e
ne

ed
ed

,i
ni

tia
te

a
ch

an
ge

re
qu

es
t.

So
ft

w
ar

e
de

si
gn

T
ra

ce
ab

ili
ty

re
co

rd
R

eq
ui

re
m

en
ts

sp
ec

ifi
ca

tio
ns

[v
al

id
at

ed
,b

as
el

in
ed

]

V
er

ifi
ca

tio
n

re
su

lts
So

ft
w

ar
e

de
si

gn
[v

er
ifi

ed
]

T
ra

ce
ab

ili
ty

re
co

rd
[v

er
ifi

ed
]

C
ha

ng
e

re
qu

es
t

[i
ni

tia
te

d]

(c
on

ti
nu

ed
)

Ta
bl

e
7.

6
(C

on
ti

nu
ed

)

R
ol

e
Ta

sk
lis

t
In

pu
tw

or
k

pr
od

uc
ts

O
ut

pu
tw

or
k

pr
od

uc
ts

D
E

S
A

N
SI

.3
.6

V
er

if
y

an
d

ob
ta

in
ap

pr
ov

al
of

th
e

Te
st

C
as

es
an

d
Te

st
Pr

oc
ed

ur
es

.
V

er
if

y
co

ns
is

te
nc

y
am

on
g

re
qu

ir
em

en
ts

sp
ec

ifi
ca

tio
n,

so
ft

w
ar

e
de

si
gn

an
d

te
st

ca
se

s
an

d
te

st
pr

oc
ed

ur
es

.T
he

re
su

lts
fo

un
d

ar
e

do
cu

m
en

te
d

in
a

ve
ri

fic
at

io
n

re
su

lts
an

d
co

rr
ec

tio
ns

ar
e

m
ad

e
un

til
th

e
do

cu
m

en
ti

s
ap

pr
ov

ed
by

A
N

.

Te
st

ca
se

s
an

d
te

st
pr

oc
ed

ur
es

R
eq

ui
re

m
en

ts
sp

ec
ifi

ca
tio

n
[v

al
id

at
ed

,b
as

el
in

ed
]

So
ft

w
ar

e
de

si
gn

[v
er

ifi
ed

,b
as

el
in

ed
]

V
er

ifi
ca

tio
n

re
su

lts
Te

st
ca

se
s

an
d

te
st

pr
oc

ed
ur

es
[v

er
ifi

ed
]

PR D
E

S
SI

.5
.8

V
er

if
y

an
d

ob
ta

in
ap

pr
ov

al
of

th
e

*P
ro

du
ct

O
pe

ra
tio

n
G

ui
de

.
V

er
if

y
co

ns
is

te
nc

y
of

th
e

pr
od

uc
to

pe
ra

tio
n

gu
id

e
w

ith
th

e
so

ft
w

ar
e.

T
he

re
su

lts
fo

un
d

ar
e

do
cu

m
en

te
d

in
a

ve
ri

fic
at

io
n

re
su

lts
an

d
co

rr
ec

tio
ns

ar
e

m
ad

e
un

til
th

e
do

cu
m

en
ti

s
ap

pr
ov

ed
by

D
E

S.
*(

O
pt

io
na

l)

*P
ro

du
ct

op
er

at
io

n
gu

id
e

So
ft

w
ar

e
[t

es
te

d]

V
er

ifi
ca

tio
n

re
su

lts
*P

ro
du

ct
op

er
at

io
n

gu
id

e
[v

er
ifi

ed
]

A
N

C
U

S
SI

.5
.1

0
V

er
if

y
an

d
ob

ta
in

ap
pr

ov
al

of
th

e
*S

of
tw

ar
e

U
se

r
D

oc
um

en
ta

tio
n.

*(
O

pt
io

na
l)

*S
of

tw
ar

e
us

er
do

cu
m

en
ta

tio
n

So
ft

w
ar

e
[t

es
te

d]

V
er

ifi
ca

tio
n

re
su

lts
*S

of
tw

ar
e

us
er

do
cu

m
en

ta
tio

n
[v

er
ifi

ed
]

D
E

S
T

L
SI

.6
.4

V
er

if
y

an
d

ob
ta

in
ap

pr
ov

al
of

th
e

M
ai

nt
en

an
ce

D
oc

um
en

ta
tio

n.
V

er
if

y
co

ns
is

te
nc

y
of

M
ai

nt
en

an
ce

D
oc

um
en

ta
tio

n
w

ith
So

ft
w

ar
e

C
on

fig
ur

at
io

n.
T

he
re

su
lts

fo
un

d
ar

e
do

cu
m

en
te

d
in

a
V

er
ifi

ca
tio

n
R

es
ul

ts
an

d
co

rr
ec

tio
ns

ar
e

m
ad

e
un

til
th

e
do

cu
m

en
ti

s
ap

pr
ov

ed
by

T
L

.

M
ai

nt
en

an
ce

do
cu

m
en

ta
tio

n
So

ft
w

ar
e

co
nfi

gu
ra

tio
n

V
er

ifi
ca

tio
n

re
su

lts
M

ai
nt

en
an

ce
do

cu
m

en
ta

tio
n

[v
er

ifi
ed

]

7.8 Traceability 271

Table 7.7 Example of a Verification Result File [ISO 11e]

Name Description

Verification results Documents the verification execution. It may include the record of:
– participants

– date

– place

– duration

– verification check-list

– passed items of verification

– failed items of verification

– pending items of verification

– defects identified during verification

7.7.1 IV&V Advantages with Regards to SQA

SQA and V&V are the main organizational processes, that is, the “watchdogs,” put
in place to ensure process, product, and service quality. Since software development
is under pressure to deliver, there is a need to counter balance the situation so that
quality is not forgotten. Internal politics can interfere with these processes and this is
why IV&V can be useful.

Given that SQA is part of the development organizational process, this function
sometimes has very little influence when there are schedule and cost pressures. The
IV&V process is like an external watchdog representing the client’s interests and not
those of the developers.

Figure 7.5 describes the relationships between customer, supplier, and IV&V.

7.8 TRACEABILITY

Software traceability is a simple V&V technique that ensures that all the user require-
ments have been:

– documented in specifications;

– developed and documented in the design document;

– implemented in the source code;

– tested;

– delivered.

272 Chapter 7 Verification and Validation

Customer

Program
management

Safety / QA
group

Developer
& sub-contractors

IV&V agent

R
eq

ui
re

m
en

ts

re
vi

ew
s,

 e
tc

.
D

el
iv

er
ab

le
s

(c
od

e,
 d

oc
um

se
nt

at
io

n,
 e

tc
.)

A
ssessm

ents

(issues, risks, etc.)

C
opies of developer

deliverables

Early drafts
of deliverables

Draft
assessments

Figure 7.5 Relationship between IV&V, supplier, and customer [EAS 96].

Traceability facilitates the development of test plans and test cases. It ensures
that the resulting tests have covered all the approved requirements. With traceability,
we focus on detecting the following situations: a need without a specification, a spec-
ification without a design element, or a design element without source code or tests.

Traceability

Ability to trace the history, application or location of an object.
Note 1 to entry: When considering a product or a service, traceability can relate to:

– the origin of materials and parts;

– the processing history;

– the distribution and location of the product or service after delivery.

ISO 9000

7.8 Traceability 273

The degree to which a relationship can be established between two or more products of
the development process, especially products having a predecessor–successor or master–
subordinate relationship to one another.

ISO 24765 [ISO 17a]
A discernable association among two or more logical entities such as requirements, sys-
tem elements, verifications, or tasks.

CMMI

Bidirectional Traceability

An association among two or more logical entities that is discernable in either direction
(i.e., to and from an entity).

CMMI

Requirements Traceability

A discernable association between requirements and related requirements, implementa-
tions, and verifications.

CMMI

7.8.1 Traceability Matrix

A software traceability matrix is a simple tool that can be developed to facilitate
traceability. This matrix is completed at each phase of the development life cycle. But
in order for the matrix information to be useful, it requires user requirements that have
been well defined, documented, and reviewed. During the project, requirements will
evolve (e.g., requirements will be added, deleted, and modified). The organization
must use process management to ensure the matrix is kept up to date or it will become
useless. Traceability of requirements is explained by the CMMI-DEV in two separate
process areas: (1) requirements development and (2) requirements management. You
can read more about traceability by referring to this source.

Traceability Matrix

A matrix that records the relationship between two or more products of the development
process.

Example: a matrix that records the relationship between the requirements and the
design of a given software component.

ISO 24765 [ISO 17a]

274 Chapter 7 Verification and Validation

For small projects that have only 20 requirements, it is easy to develop such a
matrix. For large projects, specialized tools like IBM Rational DOORS are available
to support this functionality.

Traceability Matrix

Here is a list of attributes necessary to complete the requirements traceability:

– a unique identifier for each requirement;

– a link to a document explaining the requirement (e.g., operational concept);

– a descriptive text of the requirement;

– for derived requirements, a link to the parent requirement;

– a forward link, in the development process towards the architecture or the design;

– an explanation of the requirement verification method (e.g., review, test, demonstra-
tion);

– a link to the test plan, test scenario and test result;

– the last verification result date;

– the name of the specialist responsible for the quality of this requirement.

INCOSE Handbook [INC 15]

Table 7.8 presents an example of a basic traceability matrix with only four
columns: (1) requirements; (2) source code; (3) tests; and (4) test success indicator.

To illustrate the importance of traceability, the failure of the “Mars Polar Lander”
mission landing on Mars in 1999 is explained in the following text box. The NASA
failure report pointed to the premature shutdown of the propulsion engine 40 meters
above the surface of Mars [JPL 00].

Table 7.8 Example of a Simple Traceability Matrix

Requirement Code Test Test success indicator

Ex 001 CODE 001 Test 001
Test 002
Test 003

Pass
Pass
Fail

Ex 001 CODE 002 Test 004
Test 005

.
.

Ex 002 CODE 003 Test 006
Test 007
Test 008

.
.
.

Ex 003 CODE 004 Test 010
Test 011

.
.

7.8 Traceability 275

Mars Polar Lander Failure Analysis

The engines of the Polar Lander have to be stopped automatically on landing. Sensors,
on each of the three legs of the lander, send signals when touching the ground, and the
computer shuts down the descent engines immediately.

System engineers had written the requirements that are described in the table below.
This table shows the system requirements on the left and the software requirements on
the right. We can see that the last part of system requirement 1 states that a precaution be
taken not to read the sensors during the deployment of the legs, at 457 meters (1500 feet)
from the planet, as sensors can wrongly signal a landing during this process.

Note that the last system requirement on the left is not traced to a software require-
ment. The corresponding software check was not expressed as a requirement so as not to
take into account the signals at that time. The requirement that is missing would allow
developers to add one line of code to reflect the transient signal produced by the touch-
down sensors when deploying the legs.

System requirements Flight software requirements

ID
number Description ID number Description

1 Touchdown sensors shall
be sampled 100 times
per second.

3.7.2.2.4.1.a. The lander flight software
shall cyclically check the
state of each of the three
touchdown sensors
(during entry, descent,
and landing).

The sampling process shall
be initiated prior to
lander entry to keep
processor demand
constant.

3.7.2.2.4.1.b. The lander flight software
shall be able to cyclically
check the touchdown
event state with or
without touchdown event
generation enabled.

However, the use of the
touchdown sensor data
shall not begin until 12
meters above the surface.
(Note: The altitude was
later changed from 12
meters to 40 meters
above the surface.)

276 Chapter 7 Verification and Validation

This is an example of the importance of tracing software requirements to design
and code. This missing line of code in the flight control software was never designed,
programmed and tested. According to the NASA report, this is most probably what caused
the Polar Lander to shut down its descent engine too soon hitting Mars at 22 metres per
second instead of 2.4 meters per second.

[JPL 00]

7.8.2 Implementing Traceability

The first step is to document the traceability process indicating “who does what.”
We will also assign the task of documenting and updating the content of the matrix
for the project. Then, the matrix can be created, as illustrated in this chapter, using
each requirement identification number. When other components pertaining to the
requirements are produced, like design, code, or tests, they are added to the matrix.
This is done until all tests are successful.

Use of Traceability

– Certification
◦ Certification in critical applications requires a high level of safety (e.g., commercial

airplanes). In order to demonstrate that all the requirements have been implemented
and verified, traceability facilitates certification.

– Impact analysis during development and maintenance
◦ Helps in quickly finding the interrelated elements of a system that could require a

modification. Without traceability, an inexperienced programmer could be unaware
of the ripple effects of a change.

– Project management
◦ Brings a higher and more precise state of the project as blank spaces in the matrix

point to work products or deliverables that have not yet been created or finalized.

– Follow-up of development by the customer
◦ Facilitates the monitoring of the progress of the project by looking at the supplier

traceability matrix.
◦ Helps in better understanding the impact of a change request on the project as

the customer will see the potential impacts (e.g., effort, schedule, and cost) on the
matrix.

– Reduced losses and delays
◦ Prevents the development of an unneeded component or forgetting the development

of one component.

7.9 Validation Phase of Software Development 277

◦ Helps to check that all the components have been tested and all the documents have
been verified for accuracy before their delivery to the customer.

– Reuse
◦ Facilitates reuse of documented and tested software components by clearly identify-

ing the requirements, their design, tests, and other documentation.

– Risk reduction
◦ The documentation of links between artifacts reduces the risk associated with loss of

key personnel (e.g., architect).

– Reengineering
◦ Facilitates the identification of all the functions developed, requirements, architec-

ture, code components, and tests.
◦ When a requirements document is not available, you will need to read the source

code to find its backward traceability. With the traceability matrix already available,
reengineering the system is made easier.

Adapted from Wiegers (2013) [WIE 13]

Once the development team has accepted this new practice, then additional infor-
mation can be added to the traceability matrix. For example, on the left of Table 7.8
we could add a column to paste the original text of the needs of the customer. Finally,
at the far right we could add what technique was used to verify the requirement, that
is, a test (T), a demonstration (D), a simulation (S), an analysis (A), or an inspection
(I).

7.9 VALIDATION PHASE OF SOFTWARE
DEVELOPMENT

In some organizations, validation activities have been regrouped into a single devel-
opment life cycle phase. It is often located at the end of the process. The objective of
this last phase is to prove that the software meets the initial requirements, for exam-
ple, that the right product was developed. The software is tested by the end-users to
ensure it is fit for use in a real environment. The validation plan scenarios and test
cases are developed and baselined during the integration and test phase.

Figure 7.6 presents a validation process using the Entry-Task-Verification-eXit
(ETVX) notation presented earlier in this book. In certain situations, the validation
phase will be split into many steps [CEG 90]:

– testing in the presence of the customer or its representative;

– installation of the software in the operational environment;

– user acceptance testing, where the software is either accepted as is or accepted
providing defects are corrected or not accepted. In the case where the software
is accepted providing defects are corrected, the errors detected during the tests

278 Chapter 7 Verification and Validation

Software project manager

Software validation
phase procedure

Perform platform
acceptance testing

Install the software

Software
acceptance test
book

Validated software
and documentation

Software validation
plan

Software
acceptance test book

Software quality
assurance plan

Software validation
testing file

Software installation
manual

Software requirements
specification
documentation

Integrated software
test tools

Perform final
acceptance testing

Perform end of
commissioning
acceptance testing

Figure 7.6 Validation representation of a process using the ETVX process notation [CEG 90]
(© 1990 - ALSTOM Transport SA).

must be corrected and the software tested again before the customer accepts
this software;

– end-user trial testing: use, in production, of the software in trial mode;

– warranty period, where the system is delivered and used, defects are corrected
and change requests are processed;

– software final acceptance.

The validation phase is very important for the organization. Indeed, the success of
this phase will lead to the transfer of the software to the client and, more importantly,
to payment to the supplier when a contract is involved. For the developer it is often
followed by a final project review where lessons learned are compiled to be used for
process improvement.

The end of the validation also leads to the use, in production, of the software
and the start of the support phase. The transition to maintenance is also an important
phase of the life cycle. Even if there are still minor defects, they will be addressed
during the maintenance phase.

During the validation phase, a series of tests are performed. It is not uncommon
for anomalies to be detected and that minor changes are required. In addition,
corrections or changes must be made, testing the corrected components as well as
regression testing must be performed, and the configuration management process
must be used to ensure that the changes are reflected in all of the documentation. At
this time, the traceability matrix is used to ensure that all documents in the process
have been corrected.

Validation can also lead to product qualification or even external certification
in certain domains. For example, the Food and Drug Administration (FDA) requires

7.9 Validation Phase of Software Development 279

a pre-market submission to the FDA before the release of the software in some
situations.

7.9.1 Validation Plan

A software validation plan, written by the project manager, lists the organization and
resources required to validate software. It should be approved during the software
specification review and it describes:

– the validation activities planned as well as the roles, responsibilities, and
resources assigned;

– the grouping of the test iterations, steps, and objectives.

To develop this plan, the project manager can use the following source docu-
ments: contractual documents, project plan, specifications document, system valida-
tion plan (if applicable), software quality plan, and the organization template for the
validation plan and the validation plan checklist. Figure 7.7 describes a typical table
of contents for the validation plan.

The many roles and responsibilities of the individuals involved in creating this
plan can be summarized as follows (adapted from [CEG 90]):

– the project manager:
◦ write the validation plan;
◦ get the approval of the client during a review that takes place at the end of

the software specification phase;
◦ update the plan as required during the subsequent phases;
◦ supervise the execution of the validation plan;

– the tester:
◦ execute the validation plan;
◦ organize and lead test iterations;
◦ produce the test iteration report;
◦ raise defect reports and agree on defect severity;

– test execution support personnel:
◦ prepare and configure the test environment;
◦ get the testing documents from configuration management;
◦ execute test procedures;
◦ find defects;
◦ correct defects;
◦ correct any documentation impacted by the correction of defects;

– customer:
◦ approve and sign the software validation plan;
◦ approve and sign the test iteration minutes;
◦ approve the defect correction list;

280 Chapter 7 Verification and Validation

Title page (document title, project name, customer name, etc.)

Page listing the evolution of the plan (versions and changes)

Summary

1. Introduction
1.1 Objectives
1.2 Description of the software to validate
1.3 Validation steps (e.g., installation, qualification)
1.4 Reference documents

2. Organisation of the validation activities
2.1 Activity “name of the activity”

2.1.1 Definition of the activity
2.1.2 Schedule of the activity
2.1.3 Results of the activity

3 Organisation of test iterations
3.1 Participants
3.2 Agenda of test iterations
3.3 Defect report process and defect severity scheme
3.4 Defect iteration reporting and decision

4. Validation resources
4.1 Tools
4.2 Environment

5. Roles and responsibilities
5.1 Approval of the plan

6.1 Signature of customer or representative

6.2 Signature of project manager or management

5.2 Customer or his representative
5.3 SQA
5.4 SCM
5.5 Test personnel
5.6 Support personnel

6. Approval of the validation plan

Attachment 1: Validation terminology guide

Figure 7.7 Typical table of contents of a validation plan [CEG 90].

– SQA personnel:
◦ review the software validation plan and provide comments;
◦ verify that the right versions of documents are used;
◦ assist with testing iterations;
◦ assist the project team during the lessons learned review;

7.10 Tests 281

– configuration management personnel:
◦ provide the latest approved versions of documents required for tests;
◦ assist the testing team when an error is found or with a minor modification

request;
◦ prepare deliverables identified in the contract and project plan;
◦ archive project artifacts according to guidelines.

The validation plan does not necessarily need to be a document of its own. The
information presented here can also be a section within the SQA plan or of the project
plan depending on the size of the project.

7.10 TESTS

Tests are central to the V&V of a software. There are four major categories of tests:
development tests, qualification, acceptance, and operational tests. The following text
box provides their definitions.

Test

An activity in which a system or component is executed, under specified conditions, the
results are observed or recorded, and an evaluation is made of some aspect of the system
or component.

ISO 24765 [ISO 17a]

Development Testing

Formal or informal testing conducted during the development of a system or component,
usually in the development environment by the developer.

ISO 24765 [ISO 17a]

Acceptance Testing

Testing conducted to determine whether a system satisfies its acceptance criteria and to
enable the customer to determine whether to accept the system.

IEEE 829 [IEE 08a]

Qualification Testing

Testing, conducted by the developer and witnessed by the acquirer (as appropriate), to
demonstrate that a software product meets its specifications and is ready for use in its
target environment or integration with its containing system.

ISO 12207 [ISO 17]

Operational Testing

Testing conducted to evaluate a system or component in its operational environment.
IEEE 829 [IEE 08a]

282 Chapter 7 Verification and Validation

7.11 CHECKLISTS

A checklist is a tool that facilitates the verification of a software product and its docu-
mentation. It contains a list of criteria and questions to verify the quality of a process,
product, or service. It also ensures the consistency and completeness of the execution
of tasks.

An example of a checklist is one that helps detect and classify a defect (e.g., an
oversight, a contradiction, or an omission). A checklist can also be used to ensure that
a list of tasks to be accomplished was completed, like a “to do list.” Elements of a
checklist are specific to the document, activity, or process. For example, a verification
checklist to review a plan is different than a code review checklist. In this section, the
following topics are presented:

– how to develop a checklist;

– how to use a checklist;

– how to improve and manage a checklist.

We also provide examples of different types of checklists. Following is the
description of an anecdote about the creation of the first checklist.

History of Checklists—October 30, 1935, Dayton Military Airport, Ohio, USA

On the day that the last phase of the evaluation of three new aircraft models for the
US defense was made, one of these aircraft, a Boeing model 299 took off. It began to
climb gently, then suddenly dropped out of the sky. The aircraft crashed and exploded
into flames. The accident investigation revealed that the cause was a pilot error. The pilot
was unfamiliar with the new aircraft and had forgotten to remove the elevator lock before
take-off. Once airborne, he realized what was happening and tried to manipulate the lock,
but it was too late.

After this accident, a group of pilots sat down together to find a way to ensure that
everything was done to prepare for flight and that nothing was forgotten. What resulted
is what is called a “pilot’s checklist.” Four checklists were developed: a list for takeoff, a
list once in flight, one before landing, and one after landing.

The Boeing 299 aircraft was too complex for anyone to memorize everything.
With checklists and training, the twelve units purchased by the Defense department flew
more than 1.8 million miles without any serious accident. The US Defense Department
accepted the model 299, and eventually ordered more than 12,000 more. This aircraft
model, renamed the B-17, was widely used during World War II.

The pilot checklists became so popular that other checklists were developed for crew
members and other aircrafts.

Schamel [SCH 11]

7.11 Checklists 283

Checklists for Astronauts

Astronauts are among the best trained professionals. They spend several years learning
the operation of complex equipment and how to perform a variety of activities like flying
a spaceship. Despite all the training, astronauts also require checklists. The photograph
below shows a checklist sewn onto the sleeve of a glove used by astronaut Buzz Aldrin
during the Apollo 11 mission.

http://www.internationalspacearchives.com/assets/
http://community.internationalspacearchives.com/blog/2009/06/19/apollo-11-

highlight-videos/

7.11.1 How to Develop a Checklist

There are two popular approaches used in the development of a checklist. The first is
to use an existing list, such as the ones available in this book or those found on the
Internet, and adapt them to your needs. The second approach is to develop a checklist
from a list of errors, omissions, and problems that were already noted during doc-
ument reviews and lessons learned reviews. We will see how to improve these lists
below.

let &hbox {char '046}http://www.internationalspacearchives.com/assets/
http://www.internationalspacearchives.com/assets/
let &hbox {char '046}http://community.internationalspacearchives.com/blog/2009/06/19/apollo-11-highlight-videos/
let &hbox {char '046}http://community.internationalspacearchives.com/blog/2009/06/19/apollo-11-highlight-videos/
http://community.internationalspacearchives.com/blog/2009/06/19/apollo-11-highlight-videos/
http://community.internationalspacearchives.com/blog/2009/06/19/apollo-11-highlight-videos/

284 Chapter 7 Verification and Validation

According to Gilb, checklists are developed according to some rules [GIL 93]:

– a checklist must be derived, among others things, from process rules or from a
standard;

– a checklist should include a reference to the rule it is inspired from and that it
is interpreting;

– a checklist should not exceed one page because it is difficult to memorize and
effectively use a list containing more than twenty items to be checked;

– a keyword should describe each item in the list, this facilitates its retention;

– a checklist must include a version number and the date of the last update;

– the checklist items can be stated using a sentence structure that responds in
the affirmative if the condition is satisfied. For example, regarding the clarity
of a requirement: “the requirement is clear” and not “the requirement is not
ambiguous”;

– a checklist can contain a classification, for example, the severity of defects:
major or minor;

– a checklist should not contain all possible questions or details, as a concise list
should focus on key issues and steps that need to be executed sequentially;

– a checklist should be kept updated to reflect the experience gained by the orga-
nization and its developers.

During a course on peer reviews given by Professor Laporte in a large Swedish company,
a software engineer proudly presented the checklist for code reviews he had developed.
This list included more than 250 items!

He was asked to present some elements of the checklist to other course participants.
Participants came to the conclusion that a large number of items on this list could be
detected by a source code formatting tool. A large number of elements could also be
detected by setting compiler options. Students also identified a list of items that addressed
minor issues. Following this discussion, the checklist was reduced to one page of signif-
icant problems that a developer should avoid and could detect.

Lastly, a checklist should be included in the training of the individual user. It does
not replace the knowledge required to perform the tasks listed. Table 7.9 describes a
checklist used to classify defects.

Figure 7.8 shows an example of a checklist to verify software requirements,
hence the abbreviation used for this list is REQ. Note, that for each item of the

7.11 Checklists 285

Table 7.9 Example of Defect Classification Scheme [CHI 02]

Defect class
number Defect type Description

10 Documentation Comments, messages
20 Syntax Spelling, punctuation, instruction format
30 Build, package Change management, library, version management
40 Assignment Declaration, name duplication, scope, limits
50 Interface Procedure call, input/output (I/O), user format
60 Validation

checks
Error messages, inadequate validation

70 Data Structure, content
80 Function Logic, pointers, loops, recursion, calculations,

function call defect
90 System Configuration, timing, memory
100 Environment Design, compilation, test, other system support

problems

checklist, a keyword has been added. Keywords greatly facilitate the memorization
of the items of the checklist.

• REQ 1 (Testable) – All the requirements must be objectively verifiable.

• REQ 2 (Traceable) – All the requirements must be traceable to a system
specification or a contract clause or to the proposal.

• REQ 3 (Unique) – Requirements should be stated only once.

• REQ 4 (Elementary) – Requirements should be broken into their most
elementary form.

• REQ 5 (High level) – Requirements should be stated in terms of final needs
that have to be fulfilled and not perceived means (solutions).

• REQ 6 (Quality) – Their quality attributes are defined.

• REQ 7 (Hardware) – Its hardware is completely defined (if necessary).

• REQ 8 (Solid) – Requirements are a solid base for the design.

Figure 7.8 A software requirements checklist [GIL 93].

7.11.2 How to Use a Checklist

We present two ways to use a checklist. The first way is to review a document
while keeping in mind all the elements of the checklist. The second way is to review
the entire document using only one element of the checklist at a time. This second
approach is carried out as follows:

– Use the first item in the checklist to review the document in full. When finished,
check off that item on the checklist and move to the next;

286 Chapter 7 Verification and Validation

Table 7.10 Example of the Use of a Checklist to Verify Component # 1

Name Description 1 2 3 4

Initialization � Variables and initialization values:
� When the program starts
� At the start of each loop

√

Interfaces
� Internal interface (procedure call)
� Input/Output (e.g., display, printout,

communication)
� User (e.g., format, content)

√

Pointers � Initialization of pointers to NULL
√

– Continue the review using the second element of the checklist and check off
that item on the checklist when done;

– Continue reviewing the document until all the items on the checklist are
checked off;

– During the review, note defects or errors with the document;

– After completing the review of the entire document, correct all defects listed;

– After completing the correction of defects, print the updated version of the
document and check all the corrections to ensure none are forgotten;

– If there were many important corrections, review the entire document again.

Table 7.10 provides an example of the use of a checklist designed for code review
using this approach. The columns on the right are used during the review of a section
of the document. For example, for program source code, consider the first item on
the checklist, that is, review the initialization step of the program. After checking this
item, check off this box and then move on to the next item on the checklist.

Typical exit or completion criterion with this approach is to ensure that all ele-
ments of the checklist have been checked.

For both approaches, unless the document to be reviewed is very short (i.e., less
than one page), it is suggested not to review a document on screen, but use a hard
copy in order to highlight the identified defects. During a review, a paper copy makes
it easier to navigate from one page to another of the document and facilitates the
identification of omissions and contradictions that may occur in large documents.

7.11.3 How to Improve and Manage a Checklist

Every professional, whether due to training, experience or writing style, makes mis-
takes. We must update checklists periodically as we learn from our mistakes.

The disadvantage of using a checklist is that the reviewer will focus his attention
only on the items that are on the list. This may leave defects in software that are not

7.12 V&V Techniques 287

listed on the checklist. It is therefore important to update the checklist based on results
obtained and not just to follow it blindly.

7.12 V&V TECHNIQUES

Tools and techniques can be used to help perform V&V activities. Using these tools is
highly dependent on the integrity level of the applications, the maturity of the prod-
uct, the corporate culture, and the type of development, modeling, and simulation
paradigm of individual projects.

The degree to which verification activities can be automated directly influences
the overall efficiency of V&V efforts. As there is no formal process for selecting
tools, it is important to select the right tool. Ideally, modeling and simulation tools
used during the design and the development phases should be integrated with the ver-
ification tools. Moreover, validation does not permit a detailed match with modeling
and simulation processes.

The market for verification tools is large. It is easy to find a list of at least a hun-
dred vendors on the Internet today. These tools fall into the following two categories:

– generic tools supporting data results from validation:
◦ database management systems;
◦ data manipulation tools;
◦ data modeling tools;

– formal methods:
◦ formal language;
◦ mechanized reasoning tools (automated theorem proofs);
◦ model verification (checker) tool.

7.12.1 Introduction to V&V Techniques

Wallace et al. [WAL 96] wrote an excellent technical report presenting the different
V&V techniques and it is still current today. First, we present three types of V&V
techniques, then we briefly describe these techniques, and finally, we propose tech-
niques for each of the development life cycle phases.

The V&V tasks are composed of three types of techniques: static analysis,
dynamic analysis, and formal analysis [WAL 96]:

– Static analysis techniques are those that directly analyze the content and struc-
ture of a product without executing the software. Reviews, inspections, audits,
and data flow analysis are examples of static analysis techniques;

– Dynamic analysis techniques involve the execution or simulation of a devel-
oped product looking for errors/defects by analyzing the outputs received fol-
lowing the entry of inputs. For these techniques, the output values or expected
ranges of values must be known. Black box testing is the most widely used and
well known dynamic V&V technique;

288 Chapter 7 Verification and Validation

– Formal analysis techniques use mathematics to analyze the algorithms exe-
cuted in a product. Sometimes, the software requirements may be written in a
formal specification language (e.g., VDM, Z), which can be verified using a
formal analysis technique.

7.12.2 Some V&V Techniques

7.12.2.1 Algorithms Analysis Technique [WAL 96]

The algorithms analysis technique examines the logic and accuracy of the configu-
ration of a software by the transcription of the algorithms in a structured language
or format. The analysis involves re-deriving equations or evaluating whether specific
numerical techniques apply. It checks that the algorithms are correct, appropriate,
stable, and that they meet the accuracy requirements, timing, and sizing. The algo-
rithms analysis technique examines, among other things, the accuracy of equations
and numerical techniques, the effects of rounding and truncations.

7.12.2.2 Interface Analysis Technique [WAL 96]

Interface analysis is a technique used to demonstrate that program interfaces do not
contain errors that can lead to failures. The types of interfaces that are analyzed
include external interfaces to the software, internal interfaces between components,
interfaces with hardware between software and system, between software and hard-
ware, and between the software and a database.

7.12.2.3 Prototyping Technique [WAL 96]

Prototyping demonstrates the likely results of the implementation of software
requirements, especially the user interfaces. The review of a prototype can help
identify incomplete or incorrect software requirements and can also reveal whether
the requirements will not result in undesirable system behavior. For large systems,
prototyping can prevent inappropriate designs and development which can be a
costly waste.

Prototyping

A hardware and software development technique in which a preliminary version of part or
all of the hardware or software is developed to permit user feedback, determine feasibility,
or investigate timing or other issues in support of the development process.

ISO 24765 [ISO 17a]

7.13 V&V Plan 289

Prototype

A preliminary type, form, or instance of a system that serves as a model for later stages
or for the final, complete version of the system.

Note: A prototype is used to get feedback from users for improving and specifying
a complex human interface, for feasibility studies, or for identifying requirements.

ISO 24765 [ISO 17a]
A method of obtaining early feedback on requirements by providing a working model of
the expected product before actually building it.

PMBOK® Guide

7.12.2.4 Simulation Technique [WAL 96]

Simulation is a technique used to evaluate the interactions between large complex
systems composed of hardware, software, and users. The simulation uses an “exe-
cutable” model to examine the behavior of the software. Simulation can be used to
test the operator’s procedures and to isolate installation problems.

7.13 V&V PLAN

The V&V plan essentially answers the following questions: what do we verify and/or
validate? How and when, and by whom will the V&V activities be performed and
what level of resources will be required?

IEEE 1012 specifies that the V&V effort starts with the production of a plan
that addresses the following list of elements. If there is an irrelevant item that the
project should not cover in its plan, it is better to state that “This section is not appli-
cable to this project” instead of removing the item from the plan. This allows the
SQA to clearly see that the item was not forgotten by the project team. Of course,
additional topics may be added. If elements of the plan are already documented in
other documents, the plan should refer to it instead of repeating it. The plan must
be maintained throughout the software life cycle. The V&V plan proposed by IEEE
1012 includes the following (without listing the system and hardware V&V elements)
[IEE 12]:

1. Purpose

2. Referenced documents

3. Definitions

4. V&V overview
4.1 Organization
4.2 Master schedule
4.3 Integrity level scheme
4.4 Resources summary

290 Chapter 7 Verification and Validation

4.5 Responsibilities
4.6 Tools, techniques, and methods

5. V&V processes
5.1 Common V&V processes, activities, and tasks
5.2 System V&V processes, activities, and tasks
5.3 Software V&V processes, activities, and tasks

5.3.1 Software concept
5.3.2 Software requirements
5.3.3 Software design
5.3.4 Software construction
5.3.5 Software integration test
5.3.6 Software qualification test
5.3.7 Software acceptance test
5.3.8 Software installation and checkout (Transition)
5.3.9 Software operation

5.3.10 Software maintenance
5.3.11 Software disposal

5.4 Hardware V&V processes, activities, and tasks

6. V&V reporting requirements
6.1 Task reports
6.2 Anomaly reports
6.3 V&V final report
6.4 Special studies reports (optional)
6.5 Other reports (optional)

7. V&V administrative requirements
7.1 Anomaly resolution and reporting
7.2 Task iteration policy
7.3 Deviation policy
7.4 Control procedures
7.5 Standards, practices, and conventions

8. V&V test documentation requirements

7.14 LIMITATIONS OF V&V

No technique can prevent all errors or defects. Regarding V&V, we note the following
limitations [SCH 00]:

– Impracticability of testing all the data: for most programs, it is virtually impos-
sible to try to review the program with all possible inputs, due to the multitude
of possible combinations;

7.15 V&V in the SQA Plan 291

– Impracticability of testing all the branch conditions: for most programs, it is
impractical to try to test all the possible execution paths of a software. This is
also due to the multitude of possible combinations;

– Impracticability of obtaining absolute proof: there is no absolute proof of cor-
rectness of a software based system unless formal specifications can prove it
to be correct and accurately reflect user expectations.

It is not uncommon for test plans to be designed by the developer of the sys-
tem and then approved by the V&V staff. This practice is far from ideal to guarantee
a high level of quality. Although the V&V role should not be part of the develop-
ment team, sometimes the developer becomes the evaluator of his own software. It is
therefore important that the V&V role consist of people who have good knowledge
and experience of systems in order to provide sound evaluations of the quality of the
resulting product.

7.15 V&V IN THE SQA PLAN

The IEEE 730 standard discusses V&V and starts with a statement that SQA activities
need to be coordinated with the verification, validation, review, audit, and other life
cycle processes needed to ensure the conformity and quality of the final product.
There is no need to duplicate efforts here. The standard asks the project team to ensure
that the V&V concerns have been well explained in the V&V or SQA plan.

For verification activities, the standard lists the following questions that the
project team members should ask themselves [IEE 14]:

– has verification between the system requirements and the system architecture
been performed?

– have verification criteria for software items been developed that ensure com-
pliance with the software requirements allocated to the items?

– has an effective validation strategy been developed and implemented?

– have appropriate criteria for validation of all required work products been iden-
tified?

– have verification criteria been defined for all software units against their
requirements?

– has verification of the software units compared with the requirements and the
design been accomplished?

– have adequate criteria for verification of all required software work products
been identified?

– have required verification activities been performed adequately?

– have results of the verification activities been made available to the customer
and other involved parties?

292 Chapter 7 Verification and Validation

For the validation of the software, the standard recommends that the tools that
will be used for validation be chosen and assessed based on product risk and that the
project team evaluate whether these tools need validation. If they are validated, they
are to keep the records of this validation. It also asks the team to answer each of the
following questions [IEE 14]:

– have all tools that require validation been validated before using them?

– has an effective validation strategy been developed and implemented?

– have appropriate criteria for validation of all required work products been iden-
tified?

– have required validation activities been performed adequately?

– have problems been identified, recorded, and resolved?

– has evidence been provided that the software work products as developed are
suitable for their intended use?

– have results of the validation activities been provided to the customer and other
involved parties?

Of particular interest in the SQA plan, the project team will pay special attention
to the acceptance process and how to classify defects until an exit criterion is met. It
is important to clarify the final testing process stage of a project as it is the last line
of defense before going to production.

7.16 SUCCESS FACTORS

The execution of the V&V practices can be helped or slowed down depending on a
number of organizational factors. The next text box lists some of these factors.

Factors that Foster Software Quality

1) A documented process that includes V&V tasks is available.

2) V&V tasks are planned early in the project and executed throughout.

3) Developers are trained on V&V.

Factors that may Adversely Affect Software Quality

1) Management forces a rapid and inadequate completion of the work.

2) Individuals do not feel valued.

3) Training is inadequate.

4) Principles of software quality are missing.

7.18 Exercises 293

5) The view of the final product does not correspond to the client’s vision.

6) No improvement process.

7) Life cycle processes are not formalized.

8) Quality is not the first priority.

9) Absent or superficial peer reviews.

7.17 FURTHER READING

Schulmeyer G. G. (DIR.) Handbook of Software Quality Assurance, 4th edition. Artech
House, Norwood, MA, 2008.

Wiegers K. Software Requirements, 3rd edition. Microsoft Press, Redmond, WA, 2013.

7.18 EXERCISES

7.1 List the key activities of a procedure to verify requirements.

7.2 Classify the V&V techniques listed in the following table according to three categories
[WAL 96]:

a) Static analysis: analysis of the structure and form of a product without executing it;

b) Dynamic analysis: executing or simulating a developed product with the objective of
detecting defects by analyzing its outputs based on input scenarios;

c) Formal analysis: use of mathematical equations and techniques to rigorously analyze
algorithms used in a product.

Technique
Static
analysis

Dynamic
analysis

Formal
analysis

Algorithm analysis
Boundary value analysis
Code reading
Coverage analysis
Control flow analysis
Database analysis
Data flow analysis
Decision (truth) tables
Desk-checking
Error seeding
Software fault tree analysis or

Software failure mode

294 Chapter 7 Verification and Validation

Technique
Static
analysis

Dynamic
analysis

Formal
analysis

Finite state machines
Functional testing
Inspections
Interface analysis
Interface testing
Performance testing
Petri-nets
Prototyping
Regresion analysis and testing
Reviews
Simulation
Sizing and timing analysis
Software failure mode, effects, and

criticality analysis
Stress testing
Structural testing
Symbolic execution
Test certification
Walk-throughs

7.3 Provide examples of selection criteria for an IV&V service supplier.

7.4 Your manager asks you to develop a job description for the position of V&V engineer for
critical software products. List the qualifications/experience, accountability, and respon-
sibilities typically required for that position.

7.5 For some critical systems, a standard imposes that the developer demonstrates to the
client that there is no dead code in the final product. Explain why this requirement is
imposed by the customer?

7.6 List three V&V techniques for each of the development life cycle phases.

Chapter 8

Software Configuration
Management

After completing this chapter, you will be able to:

– understand the software configuration management activities as they are rec-
ommended by ISO 12207, IEEE 828, and the CMMI®;

– understand how the change control process is used;

– learn about code control and its branching strategies;

– see how configuration management is possible in a very small project or orga-
nization;

– list what is included in a configuration management plan;

– understand what is recommended by the IEEE 730 standard for the project
software quality assurance plan.

8.1 INTRODUCTION

In many industries, the result of a production process is a product that you can see,
touch, and measure. In software, code is the most important deliverable and it is an
intangible product for most people. To give it the most visibility, it is necessary to
document it and communicate its characteristics at each step of its development. For
the same reasons, during its life cycle, it will be possible to review it, improve it,
and expand the documents supporting it. This progression originates from change
requests, omissions, defects, and problems encountered when developing the product.
Also, when software must reside on a processor that receives data and controls a pro-
cess, changes to the hardware can result in change requests to the software. As long as

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

295

296 Chapter 8 Software Configuration Management

the software supports a business process of the organization, modifications will need
to be made to keep it current with the evolution of business rules and technology.

All these documentation activities and constant changes can become costly. In
large projects, these activities represent a percentage of the effort that cannot be
ignored. This is why it is important to be familiar with these activities, thus opti-
mizing this effort. In this chapter, all the different activities of software configura-
tion management (SCM) are explained. This topic is one of the knowledge areas that
a software engineer should master and where software quality assurance (SQA) is
actively involved to ensure project teams understand its importance and are guided
given that it is an area that is often audited.

We have already discussed the importance of creating, updating, and managing
quality records in the project file to keep track of all the changes that happen over
time. Today, this information can be found in documents, emails, wikis, ticket sys-
tems, and team chats and contain a wealth of knowledge for the organization. Some
say it is strategic to be able to harness this knowledge. Be it for knowledge transfer,
project management, laws and regulations, or the obligation to conform to standards,
organizations must be able to manage all this information coherently.

8.2 SOFTWARE CONFIGURATION MANAGEMENT

The configuration of a system [BUC 96] is composed of many perspectives: func-
tional from software, firmware and/or physical hardware, as normally described in
the accompanying documentation of the product.

System

Combination of interacting elements organized to achieve one or more stated purposes

Note 1 to entry: A system is sometimes considered as a product or as the services it
provides.

Note 2 to entry: In practice, the interpretation of its meaning is frequently clarified by
the use of an associative noun, e.g., aircraft system. Alternatively, the word “system” is
substituted simply by a context-dependent synonym, e.g., aircraft, though this potentially
obscures a system principles perspective.

Note 3 to entry: A complete system includes all of the associated equipment, facilities,
material, computer programs, firmware, technical documentation, services and personnel
required for operations and support to the degree necessary for self-sufficient use in its
intended environment.

ISO 15288 [ISO 15]

8.3 Benefits of Good Configuration Management 297

In this section, we present SCM processes as recommended by ISO 12207, IEEE
828, and the CMMI.

Configuration Management

Discipline applying technical and administrative direction and surveillance to:

– identify and document the functional and physical characteristics of a configuration
item,

– control changes to those characteristics,

– record and report change processing and implementation status, and

– verify compliance with specified requirements.

IEEE 828 [IEE 12b]

Essentially, SCM describes answers to the following questions [STS 05]:

– who can make changes?

– what changes were made?

– what were the impacts of a change?

– when did this change occur?

– why were these changes made?

– what version is currently in which environment?

– what branching approach are we using for this project?

8.3 BENEFITS OF GOOD CONFIGURATION
MANAGEMENT

Good configuration management (CM) will bring about the following benefits
[STS 05]:

– reduce confusion, organize, and better manage software items;

– organize the required activities that ensure the integrity of the many software
products;

– ensure traceable and current configuration of products;

– optimize the cost of development, maintenance, and after-sales support;

– facilitate the validation of the software with respect to its requirements;

298 Chapter 8 Software Configuration Management

– provide stable development, maintenance, testing, and production environ-
ments;

– improve quality and compliance to software engineering standards;

– reduce rework costs.

8.3.1 CM According to ISO 12207

According to the ISO 12207 standard, the purpose of CM is to [ISO 17]: manage
and control system elements and configurations over the life cycle. CM also manages
consistency between a product and its associated configuration definition. SCM is
part of SQA practices. SQA must give assurance that processes and products used in
the development life cycle meet their requirements by planning, using and executing
activities that ensure that quality is integrated in the final product during its produc-
tion. The SCM activities help SQA meet its goals and the goals of the project. It is
recommended that it be used by every software project, maintenance activity as well
as for its infrastructure.

ISO 12207 defines the requirements of CM as an essential process for software
developers. We will not describe the detailed requirements here but provide only a
high-level description and focus on the expected results of using this process.

As a result of the successful implementation of the CM process [ISO 17]:

– items requiring CM are identified and managed;

– configuration baselines are established;

– changes to items under CM are controlled;

– configuration status information is available;

– required configuration audits are completed;

– system releases and deliveries are controlled and approved.

The six activities of the ISO 12207 CM process are [ISO 17]:

– plan CM;

– perform configuration identification;

– perform configuration change management;

– perform release control;

– perform configuration status accounting;

– perform configuration evaluation.

The six CM activities of ISO 12207 are composed of 19 tasks that are not
described here. The last activity, however, includes audit configuration tasks that are
described later in this chapter.

8.3 Benefits of Good Configuration Management 299

CM in ISO 12207 is also applicable to maintenance, hardware and base software.
The maintainer will implement or use the CM process for managing modifications to
the existing system. The scope also recommends that the configuration of the infras-
tructure should be planned and documented as well: the infrastructure (e.g., software
tools) shall be maintained, monitored, and modified as necessary. As part of main-
taining the infrastructure, the extent to which the infrastructure is under CM shall be
defined.

8.3.2 CM According to IEEE 828

IEEE 828 is the IEEE Standard for Configuration Management in Systems and Soft-
ware Engineering [IEE 12b] and provides the requirements and the details concerning
the SCM process. IEEE 828 also supports the ISO 12207 standard. It states the min-
imum acceptable requirements for CM in both systems and software. Consequently,
it applies to all class/type of systems or software.

IEEE 828 describes the CM activities to be performed at what point of the life
cycle and describes planning and the required resources. The standard details the
items that should be included in a CM plan and are aligned with ISO 12207 (for
software engineering), ISO 15288 (for systems engineering), and ISO 15939 (mea-
surement standard presented in a later chapter). According to IEEE 828, the purpose
of CM is to [IEE 12b]:

– identify and document the functional and physical characteristics of a product,
component, output or of a service;

– control any changes to these characteristics;

– record and report each change and its implementation status;

– support the audit of the products, results, services, or components to verify
conformance to requirements.

IEEE 828 also specifies [IEE 12b] that CM establishes and protects the integrity
of a product or product component throughout its lifespan, from determination of the
intended users’ needs and definition of product requirements through the processes
of development, testing, and delivery of the product, as well as during its installation,
operation, maintenance, and eventual retirement. In so doing, CM processes interface
with all other processes involved in the product’s life.

8.3.3 CM According to the CMMI

The CMMI-DEV has a process area named “configuration management”. The
purpose of this process area is to [SEI 10a]: establish and maintain the integrity

300 Chapter 8 Software Configuration Management

of work products using configuration identification, configuration control, configu-
ration status accounting, and configuration audits. This process area describes the
following activities be conducted [SEI 10a]:

– identifying the configuration of selected work products that compose baselines
at given points in time;

– controlling changes to configuration items (CI);

– building or providing specifications to build work products from the CM
system;

– maintaining the integrity of baselines;

– providing accurate status and current configuration data to developers, end-
users, and customers.

These CMMI activities apply to both systems and software engineering. The
following text box describes the specific goals (SG) and specific practices (SP) of
this CMMI process.

Configuration Management According to the CMMI [SEI 10a]

Specific Objectives and Practices

SG 1 Establish baselines

– SP 1.1 Identify configuration items

– SP 1.2 Establish a configuration management system

– SP 1.3 Create or release baselines

SG 2 Track and control changes

– SP 2.1 Track change requests

– SP 2.2 Control configuration items

SG 3 Establish integrity

– SP 3.1 Establish configuration management records

– SP 3.2 Perform configuration audits

Figure 8.1 shows a graphical representation of the CMMI recommendations
for CM.

8.4 SCM Activities 301

Establish
config mgmt

records

Perform
configuration

audits Action
items

Audit
results

Status

Establish integrity

Change
request

database

Configuration
management

system

Change
requests

Create or
release

baselines

Establish
a config.

management
system

Identify
configuration

items

Establish baselines

Control
configuration

items

Track
change
requests

Track
and
control
changes

Figure 8.1 CM activities according to CMMI [SEI 00].

8.4 SCM ACTIVITIES

8.4.1 Organizational Context of SCM

In large organizations, the responsibility for SCM is often assigned to a separate
department. In small organizations, the SCM tasks can be shared with developers
performing software development tasks. Software is often developed as part of a sys-
tem including hardware, software, and documentation. SCM activities included with
project team responsibilities will need to align with the infrastructure CM (e.g., hard-
ware and software). In this chapter, we will only focus on SCM.

SCM constraints that can make it difficult to meet these obligations originate
from many situations. Published policies and procedures could impose or influence
the use of SCM in projects. In the case of acquisition of software, an agreement or a
contract may contain specific SCM clauses.

When software products planned to be developed may present safety issues,
external regulating authorities and standards will likely impose the use of SCM.

Examples from the medical devices sector were described in Chapter 2 (Therac-
25), however, similar problems can be happening right now all over the world in other
domains such as avionics, nuclear energy, automobiles and banking, just to name
a few.

302 Chapter 8 Software Configuration Management

8.4.2 Developing a SCM Plan

A SCM plan is typically developed during the planning of a project. It should
be ready and approved by the time the project reaches the end of the software
specification stage. During planning, the following should be considered: a list of
SCM-related activities, the work and role assignments, the required resources and
schedule, the choice and installation of tools, and the identification of supplier
responsibilities.

The planning outputs will be placed in a separate SCM plan or in a section of
the project planning documentation for agile projects and will be typically accessible
for SQA review/audit. IEEE 828 [IEE 12b] defines six SCM information categories
to be placed in the SCM plan (adapted from [IEE 12b]):

1) Introduction to the plan (the purpose, scope, and terminology);

2) SCM management (organization, responsibilities, authorities, applicable
policies, guidelines, and procedures);

3) SCM activities (configuration identification, configuration control, and other
activities);

4) SCM schedule (identification of the SCM activities in the project schedule);

5) SCM resources (tools, servers, and human resources);

6) SCM maintenance and updates.

IEEE 828 describes, in a normative annex, the content of a SCM plan. Following
is a typical table of contents for a SCM plan:

– introduction;

– purpose;

– scope;

– relationship/dependencies with the organization and other projects;

– references (e.g., policies, guidelines, procedures);

– criteria for identifying which software elements will be placed under SCM;

– description of the configuration to be managed;

– development and testing configurations;

– delivery configuration;

– configuration identifiers and assignment;

– versions and fixes numbering rules;

– source code branching strategy;

– marking rules;

– repository content, location;

8.4 SCM Activities 303

– library management project rules;

– architecture;

– procedures for the creation of the library;

– recording of elements in the project library;

– access rules;

– backups;

– archiving;

– project library control;

– planned baselines and states.

If the software is developed and maintained for many years, as for the controls
for railway and planes, it is necessary to add:

– the source of the modifications;

– a formal modification procedure;

– the tools that were used to develop the software;

– the verification records.

Organizational units that have to be involved in the SCM process have to be
clearly identified. Table 8.1 illustrates the assignment roles for the execution of SCM
of a complex project involving many players.

Depending on the size of the project, the tasks listed could be managed by the
project manager, whereas for very small projects, one or more different people could
be directly involved.

Updates to the plan are approved when the need arises during development.
Depending on the importance of the project, SQA can be done to ensure the plan is
executed correctly. In more involved projects, SCM compliance audits can be called
to ensure adherence to plans.

It can be a bit overwhelming to be assigned the development of a SCM plan for
the first time. Most organizations have examples and templates that can be used to
kick start this process. It is common to reuse the majority of sections of existing SCM
plans in an organization. Therefore, SQA should ensure that the reference documents
are of high quality so it can be reused in the future. Table 8.1 shows an example of
SCM task allocations for a project.

8.4.3 Identification of CI to be Controlled

This activity aims at identifying which software elements will need to be controlled
during the development and maintenance life cycle of the project to avoid creating
elements without proper identification or links with other elements already identified.

Ta
bl

e
8.

1
E

xa
m

pl
e

of
SC

M
Ta

sk
A

llo
ca

tio
ns

[C
E

G
90

a]
(©

19
90

,A
L

ST
O

M
T

ra
ns

po
rt

SA
)

Ta
sk

SC
M

m
an

ag
er

Pr
oj

ec
tm

an
ag

er
Pa

rt
ic

ip
an

ts
SQ

A
Im

pl
em

en
ta

tio
n

m
an

ag
er

C
ol

le
ct

an
d

ce
nt

ra
liz

e
ch

an
ge

re
qu

es
ts

Pr
od

uc
e

M
an

ag
e

ch
an

ge
re

qu
es

t
pr

oc
es

s
L

ea
d

an
d

re
qu

es
t

Pa
rt

ic
ip

at
e

Pa
rt

ic
ip

at
e

Pa
rt

ic
ip

at
e

if
sy

st
em

is
m

od
ifi

ed
M

an
ag

e
ac

ce
ss

ri
gh

ts
Pr

od
uc

e
Pa

rt
ic

ip
at

e
N

am
e

co
m

po
ne

nt
s

Pr
od

uc
e

Id
en

tif
y

re
la

tio
ns

hi
ps

Pa
rt

ic
ip

at
e

Pr
od

uc
e

Pa
rt

ic
ip

at
e

M
ar

k
ite

m
s

Pr
od

uc
e

St
or

e
ite

m
s

K
ee

p
ite

m
s

ac
tiv

e
an

d
re

qu
es

t
ar

ch
iv

in
g

O
rg

an
iz

e
lib

ra
ri

es
Pr

od
uc

e
C

on
tr

ol
ch

an
ge

s
to

th
e

lib
ra

ri
es

Pr
od

uc
e

(f
or

m
)

Pr
od

uc
e

(c
on

te
nt

)

C
on

tr
ol

co
m

pl
et

en
es

s
an

d
co

he
re

nc
e

of
th

e
lib

ra
ri

es

Pr
od

uc
e

(f
or

m
)

Pr
od

uc
e

(c
on

te
nt

)

Pr
ov

id
e

co
pi

es
Pr

od
uc

e
R

ep
or

to
n

co
nfi

gu
ra

tio
n

st
at

us
Pr

od
uc

e

8.4 SCM Activities 305

Configuration Item (CI)

Aggregation of work products that is designated for configuration management and
treated as a single entity in the configuration management process.

ISO 24765 [ISO 17a]

Configuration Item Identification

An element of configuration management, consisting of selecting the configuration items
for a system and recording their functional and physical characteristics in technical doc-
umentation.

ISO 24765 [ISO 17a]

The identification of CI requires: (1) an already established classification refer-
ence nomenclature for items and (2) a predefined list of planned baselines identified
uniquely throughout the project schedule.

Baseline

Specification or product that has been formally reviewed and agreed upon, that thereafter
serves as the basis for further development, and that can be changed only through formal
change control procedures.

ISO 24765 [ISO 17a]

The definition of a baseline implies that a document or software product was
approved following a formal review. It is then available to the customer or ready for
another step in the development process. Baselines for the production of new versions
are also used.

The different project artifacts are typically located in a document or on the project
server in folders (see an example in Figure 8.2). This folder structure is often man-
dated by the SQA or the project office as good practice for all projects. We will see in
section 8.8 that this structure can be repeated in all the branches of the CM repository.
It is recommended that developers do not change this hierarchy so that it is consistent
during the project and can also be compared with other projects.

8.4.3.1 Identification of CI

Each CI should be assigned a unique identifier that helps with recognizing the evo-
lution of the item over time and can be recognized by everyone involved in a project.

306 Chapter 8 Software Configuration Management

Figure 8.2 Example of a directory structure to control configuration with the Subversion CM tool.

An identifier is composed of a fixed part and a variable part. The fixed part is the
name and the variable part reflects its evolution. When an evolution of the item does
not add value, we call it a revision. This is the case when an item has been corrected or
improved but no functionality, interface or operational constraints have been altered.

How to Number Software Versions?

Software versioning is the process of affecting a name and a unique version to the initial
software and its documentation and to subsequent releases of a software of a specific
baseline. Typically, within the same category of changes (majors or minors) the numbers
will be incremented gradually. There are all sorts of approaches to versioning. In this
book, we will use the indicator sequence approach. For example, when version 3.4 of a
software goes through a small change or a correction, it will progress to version 3.4.1.
But if a major functionality change occurs, the numbering will go to version 3.5. The use
of the zero, for example version 0.5, is used before initial release, that is, when software
is still in alpha or beta testing.

To indicate that an evolution of a configuration item affects descending compat-
ibility but ensures it still works with previous versions of other CI, we use a new
release version. This is the case when functionalities or existing interfaces were not
modified but new interfaces and functionalities were added.

8.4 SCM Activities 307

Version Control

Establishment and maintenance of baselines and the identification and control of changes
to baselines that make it possible to return to the previous baseline.

ISO 24765 [ISO 17a]

For example, for a radar display software-based system, we could use the fol-
lowing naming convention: Identification of the contract—System identification—
Identification name of the software component—evolution indicator (version/
revision). For version 1 and revision 2 of the architecture document of the radar dis-
play document, we would obtain: C001-Rad-Aff-DA-01-02.

8.4.3.2 Configuration Item Marking and Labeling

Marking identifies a configuration item such as a software or a requirement specifi-
cation document.

A software item could be identified with the help of the following information
(e.g., its metadata): the software component identification information, its author, its
creation date, its functional description, its history of modifications including a date,
the modification reason as well as the author and finally, a summary of its design. For
documents, this metadata could be saved using the following structure: a presentation
page, a section explaining the evolution of the document, the main text, and possibly
attachments.

The presentation page could contain the following information:

– the name and address of the organization;

– the document author name;

– the document creation date (yyyy-mm-dd);

– the document version;

– the security level (e.g., confidential, limited circulation, secret).

The evolution section is updated when the document is modified and includes
the following information:

– the version indicator;

– the date of change: yyyy-mm-dd;

– the section or page that was modified;

– a brief description of the modification.

The evolution section is often formatted as a table as shown in Table 8.2.

308 Chapter 8 Software Configuration Management

Table 8.2 Example of Table Describing the Evolution of a Document

Revision
Date
(yyyy-mm-dd)

Page or section
modified Author

Description of the
modification

00 C. Laporte First version
1.1 2006-03-01 P 5 A. April Added section 2.1
1.2 2007-02-13 Section 3.1 A. Abran Corrected a reference

8.4.3.3 Selecting CI

A software configuration item (SCI) is an aggregation of software components identi-
fied for CM and treated as a whole (e.g., one entity) by the SCM process. In addition
to the source code, there are a number of software work products, such as plans,
requirements, specifications, and design documents, that can be controlled by SCM.
The project manager and his team must decide which ones to select to be controlled
by the SCM process.

The SCI selection is always some form of compromise between enough visibility
to provide tight control on an element versus not managing it at all. It is not possible
to tightly manage all the elements of a software project at a reasonable cost. Once
an item is chosen, it will be subject to formal review and acceptance by a number of
individuals. Some reviews are not too formal, as we have seen in the review chapter.
Formal reviews, on the other hand, require that a process be followed, minutes be
issued and that defects be tracked, corrected and verified. This is why choosing the
right amount of CI is an important task. The following text box lists criteria to help
with this decision.

Criteria to Help Choose SCIs

– Number of changes anticipated

– Complexity and dimensions

– Criticality

– Security

– Impact on development schedule

– Impact on implementation schedule

– Commercial items that are not modified

– Items provided by the customer

– Maintenance performed by different suppliers

– Involves more than one supplier

8.5 Baselines 309

– Location—when components are developed at many sites

– Multiple usage—when a component is used by many systems

8.5 BASELINES

A software development life cycle model defines each of the development processes
uniquely and places them in a pipeline. Each step is defined as a coherent group of
activities and is characterized by a dominant activity. Normally, to ensure its quality,
a review is performed at the end of each stage or iteration.

A baseline is a set of CI that have been carefully pre-selected and are fixed along
with specific milestones throughout the project. A baseline can only be changed
through a change control procedure. A given baseline, plus all the changes subse-
quently approved to it, represents its current configuration. This is important because
we want our employees to work on the right version of things and know where they
are. The baselines for key project milestones commonly referred to by team members
and listed in a typical CM plan are:

– specification;

– design;

– construction;

– integration;

– validation;

– delivery.

Figure 8.3 shows an example of a product development cycle that includes hard-
ware and software. The dotted lines indicate some of the milestones. For example,
the system requirements analysis phase produces the software and hardware require-
ments document. A review of this document, called “System Requirement Review,”
is then performed with the customer. Once this document is approved, it is placed
in the functional baseline of the project. Then, the document software requirements
are reviewed by the development team. It can then be presented to the customer for
approval at a formal review called the “Software Specification Review.” Once this
document is approved, it is stored in the repository called “allocated baseline.” Other
software reviews that could occur are: a review of the preliminary design (Preliminary
Design Review), a detailed design review (Critical Design Review), and a review to
ensure that software components are ready for testing (Test Readiness Review).

Once the CI are tested and corrections are made, they are incorporated into the
hardware. Lastly, the system is production tested and is then validated with the client.

Figure 8.4 presents elements of the specification phase of a project using the
Entry-Task-Verification-eXit (ETVX) process notation [RAD 85] described in an

310 Chapter 8 Software Configuration Management

System
design

Software
reqts

analysis Prelim
design

Detail
design Coding,

CSU
testing

CSC
integration

testing
Functional
baseline

CSCI
testing

SRR
SDR

SSR

PDR

CDR
TRR

Product
baseline

Design
baseline

Hardware

Software

Allocated
baseline

Figure 8.3 Example of a project life cycle where planned baselines are indicated.

OutputsInputs

Entry criteria

Measures

Exit criteria

Tasks

• Develop specifications

• Review specifications

• Obtain approval of
specifications

• Store specification in
repository

• Prepare validation plan

Statement of work
Specifications

Review record

Draft validation plan

Project plan

Project CM plan

Project SQA plan

Approved project plan
Approved project SQA plan
Approved project CM plan

Approved specifications

Effort to develop specifications
Effort to review specifications
Effort to correct specifications

Figure 8.4 Description of the specifications steps using ETVX notation.

8.6 Software Repository and Its Branches 311

earlier chapter. Notice that a CM plan is part of the inputs. Other CI will also be
added to the baseline throughout the software life cycle.

Following the incorporation of a SCI into the SCM repository, any further
changes to the SCI will need to be approved as described in the SCMP. Following this
approval process, the item will be incorporated to its proper location in the project
repository.

Delivery

Release of a system or component to its customer or intended user.

Release

A delivered version of an application that may include all or part of an application.
Collection of new and/or changed configuration items that are tested and introduced

into the live environment together.

Version

An initial release or re-release of a computer software configuration item, associated with
a complete compilation or recompilation of the computer software configuration item.

An initial release or complete re-release of a document, as opposed to a revision
resulting from issuing change pages to a previous release.

ISO 24765 [ISO 17a]

8.6 SOFTWARE REPOSITORY AND ITS BRANCHES

There are many options for SCM repository tools, often called version control soft-
ware or software repository. They have been created to facilitate working as a group
on software development, maintenance, and production, where code and documenta-
tion need to be shared and updated.

Software Repository

A software library providing permanent, archival storage for software and related docu-
mentation.

ISO 24765 [ISO 17a]

312 Chapter 8 Software Configuration Management

Table 8.3 Examples of Functions Provided by the SCM Repository

Functions of a software repository

Supports multiple levels of SCM (managers, developers, SQA, systems engineering, etc.);
Enables the storage and retrieval of CI;
Enables the sharing and transfer of CI between groups and developers;
Enables the storage and recovery of archive versions of CI;
Provides verification of status, of the presence of all the elements, and allows for the

integration of changes into new baselines;
Ensures the correct build and correct versions of products;
Provides storage, update, and retrieval of SCM records;
Supports the production of SCM lists and reports;
Supports backward and forward traceability of the requirements throughout the life cycle;
Provides safe storage and restricted access of CI so that they cannot be changed without

authorization.

Source: Adapted from [CEG 90a].

The software repository is central to development, maintenance, and release
management activities during a project. Table 8.3 lists some of the functions of a
software repository. Several types of libraries may be employed. For example, one of
following three types of libraries can be used:

– Private library: used by the developer to make or modify CI, for development
or unit testing activities;

– Project library: accessible to all the members of a project, it contains the ele-
ments likely to be used by the team members. This library is the official source
of all information about the project. Its access is normally controlled;

– Public library: is often where the library elements common to several projects,
such as common tools and reusable components, are located.

When configuring the SCM repository, a number of decisions must be made by
the librarian. It might be a bit confusing (see Figure 8.5) the first time you do this but
after using it for a time, this becomes second nature. One key item of the SCM plan
is the proposal of a branching strategy that will be appropriate for the project. Nearly
every software repository tool has some form of branching support. Branching means
you diverge from the main line of development (also called the trunk) and continue to
do work without affecting them. This is called isolating yourself. In many tools, this
is a somewhat expensive process often requiring you to create a new copy of your
source code directory, which can take a long time for large projects. You will also
find many other resources online. The following text summarizes the basic strategies
for typical branches used in software development projects.

8.6 Software Repository and Its Branches 313

Figure 8.5 Choosing a bad
branching strategy.
Source: Used under license from
Shutterstock.com.

Microsoft has published guidance on branching https://www.visualstudio.com/en-us/
articles/branching-strategies-with-tfvc

Trunk, Branches, Commit, and Synchronize

Tag: A symbolic name assigned to a specific release or a branch.

Trunk: The software’s main line of development; the main starting point of most
branches.

Conflict: A change in one version of a file that cannot be reconciled with the version of
the file to which it is applied. Note: can occur when versions from different branches are
merged or when two committers work concurrently on the same file.

Branch:
1) A computer program construct in which one of two or more alternative sets of program

statements is selected for execution.

2) A point in a computer program at which one of two or more alternative sets of program
statements is selected for execution.

Note: Every branch is identified by a tag. Often, a branch identifies the file versions that
have been or will be released as a product release. May denote unbundling of arrow

https://www.visualstudio.com/en-us/articles/branching-strategies-with-tfvc
https://www.visualstudio.com/en-us/articles/branching-strategies-with-tfvc

314 Chapter 8 Software Configuration Management

meaning, i.e., the separation of object types from an object type set. Also refers to an
arrow segment into which a root arrow segment has been divided.

Commit: To integrate the changes made to a developer’s private view of the source code
into a branch accessible through the version control system’s repository.

Development Branch: A branch where active product development takes place.

Stable Branch: A branch where stability-disrupting changes are discouraged.

Synchronize:
1) To pull the changes made in a parent branch into its (evolving) child (for example,

feature) branch.

2) To update a view with the current version of the files in its corresponding branch.
ISO 24765 [ISO 17a]

Before getting into the description of the different branching strategies, we draw
your attention to the fact that each branch incurs a certain management cost. It is
therefore important to choose a strategy that will have a minimal impact on your
specific project. Adding a new branch has the potential of additional costs that will
be incurred later, in the integration and testing phases. With this in mind, here are
just some of the many popular branching strategies (e.g., patterns) used in software
projects:

– simple: two to three developers working together on a project;

– typical: four or more developers working on a project requiring several ver-
sions;

– advanced: five or more developers working on the same project;

– functional: five or more developers working on specific functions, resulting in
several versions.

Abhishek Luv’s Podcast: SDP Show #4: Source control and basics of Git & GitHub
http://www.softwaredevelopmentpodcast.in/

The elements of these strategies are iterative, so it is possible to start with a
simple strategy and gradually move toward an advanced strategy. Again, trying to
minimize the complexity of your project in order to facilitate its development is the
key to success with SCM.

let &hbox {char '046}http://www.softwaredevelopmentpodcast.in/
http://www.softwaredevelopmentpodcast.in/

8.6 Software Repository and Its Branches 315

The moment there is more than one person working on a software, there is a need to isolate
them so they can work independently. The main branch must always serve as a point of
departure and return for a branch. That is to say, you create branches to isolate yourself
from the main branch and then you need to bring these changes back to the main branch.
Avoid staying away for too long or creating branches from branches, because this pattern
is not a preferred approach and can create confusion. Typically, only a backup branch
uses this approach with little impact.

8.6.1 A Simple Branching Strategy

This strategy is appropriate for simple cases, for the development of a website for
example, and requires the creation of two types of branches (see Figure 8.6):

– the main branch;

– the versions branch.

This simple branching strategy proposes that the main branch is used by the
developers of the software. It implies that the main branch must remain stable at all
times as we are always in it. Once the software is quite advanced and the team wants
to deliver a version to its client, a version branch is created (e.g., 1.0.1) that will
contain a complete version of all artifacts from the first production version. On the
main branch, the team can continue working and improving the software. Over time,
the development team will be ready to deliver a subsequent release and create another
release branch (e.g., 1.1.3) and this branch will become the new production version
for the client. The previous branch can be kept as historical or may be archived given
that the customer has been provided a new version.

Main branch

B
ra

nc
hi

ng

Version 1.0.1

Version 1.1.3

Figure 8.6 The simplest
branching strategy of versions by
branch.

316 Chapter 8 Software Configuration Management

This strategy is appropriate for the following conditions:

– a very small team who works in the same location in order to communicate
easily;

– corrections to production software require a fusion to the main branch. These
must be closely controlled because they are made directly within the develop-
ment branch;

– new version shipped from the main branch includes all previous changes from
this branch.

8.6.2 A Typical Branching Strategy

This strategy responds to the needs of more than 80% of the SCM requirements for
software projects. It requires the implementation of three branches (see Figure 8.7):

– a main branch;

– a development branch;

– a production branch.

In this strategy, no one works directly in the main branch. It is only used for
the integration of components from the team members. This strategy will force team
members to work in the development branch. It is in this branch that most of the
activity and changes will take place. The development team must control its content.
As a general principle, components in a branch should always be able to compile
without error. The main branch will receive an intermediary version from time to
time that marks progress and can be used for demonstrations as well. Its rate of change
will depend on the number of merges coming from development (typically every few
days, but at least once a week). Finally, the version branch will also be quite stable as it
contains the production version. This branch can be used to fix production problems

Trunk

B
ra

nc
hi

ng

Feature (version)

Development branch

B
ra

nc
hi

ng

Figure 8.7 A typical strategy of
development and production
branches.

8.6 Software Repository and Its Branches 317

but if it is changed, then someone must merge these changes to the development
branch to ensure it is kept in sync. This strategy can be applied in the following
situations:

– delivery of a unique major version;

– delivery of a major version at fixed intervals;

– every new version delivered, coming from the version branch, includes all the
changes from the previous versions.

Using the GIT CM tool, here is a simple example that describes the use of two branches
simultaneously. Suppose that the development team has created a file “mytext.txt” that is
ready to be reviewed by the maintainers. The development team sends the new file onto
the remote server GIT branch “master”.

% git add mytext.txt
% git commit –m “Create file mytext.txt”
% git push origin master

The development team, wanting to make changes without affecting the maintenance team,
create a branch to isolate their future changes.

% git checkout –b “Development”
% git push origin Development

Meanwhile, the maintainers review the file created by the developers by downloading the
GIT server file.

% git pull origin master

Once they have completed their changes, they update the file on the server:

% git commit -a -m "Correction done by maintainers"
% git push origin master

During this time, the developers have made several changes and are ready to re-validate
the file. Here is the state of the GIT server at that time.

Modification 1 Modification N

Create file
mytext.txt

Correction by
the maintainers

Development branch

Master branch

318 Chapter 8 Software Configuration Management

To re-validate their changes, developers must update their changes in the “master” branch.
The first step is to get the changes to the branch “master” server.

% git checkout master
% git pull origin master

Then developers merge the two branches.

%git merge Development –no-ff

GIT notifies developers that automatic merging is not possible because changes were
made to the files. Developers must change the files that are causing the conflict and resub-
mit the changes to the server.

% vim mytext.txt
% git commit –a –m “Fusion of the Development branch”
% git push origin master

Here is the result after the merge of the two branches.

Fusion of the
development

branch

Modification 1 Modification N

Create file
mytext.txt

Correction by
the maintainers

Development branch

Master branch

8.7 CONFIGURATION CONTROL

Configuration control (also named change control) is concerned with managing
changes during the project. Change control identifies and documents the relative
importance of proposed or needed changes to the product, when they will be
deployed and who will approve the change (except urgent fixes that will follow a
fast path process).

Configuration Control

An element of configuration management consisting of the evaluation, coordination,
approval or disapproval, and implementation of changes to configuration items after for-
mal establishment of their configuration identification.

CMMI [SEI 10a]

8.7 Configuration Control 319

Business

requirement

System requirement,

use case, external

interface requirement,

quality attributes

Change

request

Software

functional

requirement

Architecture, user

interface, functional

design

Code

System

test

Is verified
by

Is satisfied by

Is implemented in

Is origin of

Drives specification ofModifies

Project

plan task

Leads to

creation of

Depends

on another

Modifies

Modifies

Modifies

Business

rules

Is origin of

Is verified by

Unit

test

Integration

test

Is verified by

Figure 8.8 Impact of a change request on a software [WIE 13].

Changes to the software can have several origins:

– problem reports (PR), or trouble report (TR), from the development team,
maintenance team, or customer;

– modification/evolution requests (MR) communicated as a result of an environ-
ment change or the need for new features;

– requests from maintenance and infrastructure (preventive and perfective)
issued to improve the maintainability of the software.

In some organizations, these types of changes require that an engineering change
request be raised in a centralized system (e.g., often referred to as a change report or
ticket). Figure 8.8 describes the impact of a change request involving software and
its intermediate products.

8.7.1 Requests, Evaluation, and Approval of Changes

A change request management process, as shown in Figure 8.9, describes the typical
sequence for processing a change request (called a ticket in some environments):

320 Chapter 8 Software Configuration Management

– the customer (internal or external) or a team member submits a request;

– a maintainer evaluates the priority, impact and cost;

– the Change Control Committee (CCC) or Configuration Control Board (CCB)
reviews and approves the change;

– the change is made to the software and associated documentation;

– the change is tested and approved by the end-user;

– the change is moved to production or installed in a system and verified after-
ward;

– the change request or ticket is closed and then later archived.

Note that the request will change state at each stage of this process (see
Figure 8.9).

During the verification activity, developers and maintainers will also typi-
cally perform a series of regression tests to ensure that a change has no impact
on other characteristics. Some automation servers, like Jenkins (https://jenkins.io/)
or locally developed test robots are also used to perform accelerated regression
testing.

No formal
verification is
requested;

changed product
is installed

CCB

Submitted

Evaluated Rejected

Approved

Change made

Verified

Closed

Change has been verified

Modified product
is installed

Verification (e.g., regression test) failed
Change has been
made; formal
verification
requested

CCB decided to
make the change

Don’t make

the change

Evaluator performs
impact analysis

Originator submits a
change request

Archived

Formal verification:
e.g., inspection

Archived

Figure 8.9 Change request change management workflow.
Source: Adapted from Wiegers (2013) [WIE 13].

let &hbox {char '046}https://jenkins.io/
https://jenkins.io/

8.7 Configuration Control 321

Change Management

Judicious use of means to effect a change, or a proposed change, to a product or service.
CMMI [SEI 10a]

Regarding critical software, it is common to add evaluation tasks to assess the
level of risk for each of the proposed changes. Individuals who can conduct this type
of risk evaluation will need to be invited to contribute to the impact analysis of this
change request.

The notion of traceability was introduced in an earlier chapter. Traceability is
also used in SCM to facilitate the impact analysis of a change request.

8.7.2 Configuration Control Board

Typically, the authority that can accept or reject a proposed change to a software
is named a configuration control board (CCB) or a change management office. In
smaller projects, this authority may be directly delegated to the project manager or
a maintainer. There may be several levels of change authority depending on your
organizational processes, the criticality of the software involved, the nature of change
(e.g., impact on budget or schedule), or the current step of the life cycle of the project.

Configuration Control Board

A group of people responsible for evaluating and approving or disapproving proposed
changes to configuration items, and for ensuring implementation of approved changes.

ISO 24765 [ISO 17a]

The composition of a CCB with respect to a particular project changes on a
case by case basis depending on the criticality of the change. The project special-
ists, according to project size and criticality, may be asked to give their opinion at
CCB meetings. In addition to the project manager, a SCM representative and even a
SQA representative may be present to verify that the change process and CM plan
are followed.

322 Chapter 8 Software Configuration Management

The main tasks of the CCB are: take a go/no-go decision, assign a priority, assign
the change to a future version, answer request issuers, issue access rights to libraries
and write a change order with decisions taken. The change request includes the fol-
lowing information: identification of the affected software, the list of items in a base-
line to modify, SQA tasks to ensure quality checks, if any.

8.7.3 Request for Waivers

The constraints imposed during the development activities may lead to situations
where some constraints may need to be relaxed to ensure the success of the project
(e.g., a process is not adequate to meet project needs, a request for a non-compliance).
A waiver may then be raised on project plans or obligations (e.g., agreement or con-
tract) of the approved life cycle processes. A waiver is an authorization to depart from
an obligation. When approved, it also allows the use of that item when completed
although it does not meet all of its requirements.

Waiver

A written authorization to accept a configuration item or other designated item which,
during production or after having been submitted for inspection, is found to depart from
specified requirements, but is nevertheless considered suitable for use as is or after rework
by an approved method.

ISO 24765 [ISO 17a]

A procedure for submitting and approving waivers should be described in the
organizational processes.

8.7.4 Change Management Policy

A policy sets out general principles that have to be followed and are reflected in the
processes and procedures of an organization. The elements of a change management
policy are:

– the original text describing a change request will not change or will not be
deleted from the organizational repository;

– each changed requirement will be traceable to an approved change request;

8.8 Configuration Status Accounting 323

– all changes to requirements should follow the SCM process. If a change request
is not documented, it will not be considered;

– a CCB is created for each project;

– the contents of the change request library must be available to all project team
members;

– no design or development/maintenance work can be initiated on unapproved
changes, with the exception of exploration or feasibility studies required by
the CCB.

8.8 CONFIGURATION STATUS ACCOUNTING

The status accounting of CI represents all the recording and reporting activities
required for managing the SCM.

Configuration Status Accounting

An element of configuration management consisting of the recording and reporting of
information needed to manage a configuration effectively.

This information includes a list of the approved configuration, the status of proposed
changes to the configuration, and the implementation status of approved changes.

CMMI [SEI 10a]

8.8.1 Information Concerning the Status of CI

Information concerning the state of configuration elements must be identified, col-
lected, and maintained. The following information should be available to managers
and developers: the approved configuration identification, as well as the identifica-
tion and current status of changes, deviations and waiver approvals. SCM items are
recorded in sufficient detail so that previous versions can be recovered when needed.
Questions answered by the status of CI:

– what is the status of item X?

– was change request X approved or rejected by the CCB?

– what has changed in this new version of this item?

– how many defects were detected last month and how many are corrected?

– what is the cause of this change request?

324 Chapter 8 Software Configuration Management

An Example of Status Control Information using Microsoft Team Foundation
System 2010 [GHE 09]

Imagine I have a main branch and one isolation branch: Branch 1 features originate from
the main branch. Now let us assume that a member makes some changes to the items
of Branch 1. These changes are merged (backward fusion) to the main branch and the

8.9 Software Configuration Audit 325

team named this new release branch (version 1.1) in a new version branch (which is
connected to the main branch). Using the annotate function, we can see the status details
of that change, such as that line X has been changed by person Y on date and time Z. The
question that now arises is: what detail do we want to see or report for a given branch?
The answer is, of course, you want to see which branch we originated from to make these
changes.

The Tooltip function of TFS 2010 allows you to find all the activities that took place
on a branch. Here is what we can see from the version 1.1 branch. The first part of the fig-
ure shows a chronological view where you can follow the history of the merge of change
number 74 (named Changeset 74) and the second part of the figure shows a hierarchical
view where you can follow the hierarchical dependencies between the branches.

8.8.2 Configuration Item Status Reporting

Reported information can be used by various organizational units and the project
team. The CMMI noted that this report typically includes [SEI 10a]:

– the meeting minutes of the change management board;

– the summary and status of change requests;

– the summary and status of problem reports (including corrective measures);

– the summary of changes to software repositories;

– the revision history of CI;

– the state of software repositories;

– the results of audits of the software repositories.

Figure 8.10 shows the output of a tool that reports on CI.

8.9 SOFTWARE CONFIGURATION AUDIT

As presented already, the IEEE 1028 standard defines audits as an independent exami-
nation of a software product, software process, or set of software processes performed
by a third party to assess compliance with specifications, standards, contractual agree-
ments, or other criteria [IEE 08b].

A SCM audit could be called for a software project to assess how CIs satisfy the
functional and physical characteristics needed and as well as to assess how the SCM
plan was implemented in the project. Two types of formal audits are typically per-
formed: a functional configuration audit (FCA) and the physical configuration audit
(PCA). Details about these audits can be found in the informative annex J of IEEE
828 titled “Examples of how configuration auditing is applied.” We will now present
an overview of these two audits.

326 Chapter 8 Software Configuration Management

Figure 8.10 Example of a status report with the Commit Monitor tool [COL 10].

Configuration Audit

An audit conducted to verify that a configuration item or a collection of configuration
items that make up a baseline conforms to a specified standard or requirement.

CMMI

Physical Configuration Audit (PCA)

An audit conducted to verify that a configuration item, as built, conforms to the technical
documentation that defines it.

8.9 Software Configuration Audit 327

Note: For software, the purpose of the software physical configuration audit is to
ensure that the design and reference documentation is consistent with the as-built software
product.

IEEE 828 [IEE 12b]

Functional Configuration Audit (FCA)

An audit conducted to verify that the development of a configuration item has been com-
pleted satisfactorily, that the item has achieved the performance and functional charac-
teristics specified in the functional or allocated configuration identification, and that it is
operational and support documents are complete and satisfactory.

ISO 24765 [ISO 17a]

8.9.1 Functional Configuration Audit

The objective of the FCA is to provide an independent evaluation of software products
to verify that the actual functionality and performance of each configuration item
is within specifications. FCA should be concerned not only with the functionality,
but also with the non-functional requirements. FCA typically includes the following
[KAS 00]:

– an audit of test documentation and test results;

– audit reports of V&V to ensure their accuracy;

– a review of all approved changes to ensure they have been properly incorpo-
rated and verified;

– a review of updated documents to ensure their accuracy;

– a sampling of minutes of design meetings to ensure that all findings have been
incorporated;

– a sampling of performance and other non-functional test results for complete-
ness.

FCA of the outputs of the design process verifies the following [IEE 12b]:

– traceability between the design items and their sources (requirements);

– every requirement is linked to at least one design element;

– every design element is linked to at least one requirement that justifies it.

8.9.2 Physical Configuration Audit

The objective of the PCA is to provide an independent assessment of CI to confirm
that each element that makes up the software as delivered is present and traceable

328 Chapter 8 Software Configuration Management

to specifications [KAS 00]. This audit verifies that the software and documentation
are correct, consistent and ready for delivery. The available documentation typically
includes: installation manuals, operation manuals, maintenance manuals, and version
description documents.

A PCA will typically include the following elements [KAS 00]:

– an audit of specifications to ensure completeness;

– a review of the problem reporting and change management process;

– a comparison between the architectural design and components to ensure con-
sistency;

– a code review to assess compliance to coding standards;

– audit documentation to ensure the completeness and compliance with the for-
mat and with functional descriptions. These manuals include user manuals,
programmer’s manual, and operator’s manuals.

PCAs of the outputs of the requirements process in the life cycle verify the
following [IEE 12b]:

– requirements assets have been placed under configuration control;

– requirements assets have been properly labeled in accordance with the
CMP;

– an inventory of requirements assets exists and correctly reflects the attributes
of each CI;

– there is evidence of the use of change control procedures for each of the
changes made to previous baselines, if any (for example, in a previous iter-
ation).

8.9.3 Audits Performed During a Project

These audits are required during the phases of design and development (before the
PCA and FCA) to verify the consistency of the design during its evolution. These
audits are performed [KAS 00]:

– to verify that the interfaces between hardware and software comply with the
design;

– to verify that the code is fully tested and that business requirements are met;

– to check whether the product design throughout the development meets the
functional requirements;

– to check whether the code adheres to the detailed design.

8.10 Implementing SCM in Very Small Entities with ISO/IEC 29110 329

“The cost of rework adds greatly to the cost of developing software and can be
reduced by implementing an effective SCM program. The principles behind the modern
cost-of-quality concept were derived for manufacturing applications and can be found in
the works of J. M. Juran.”

Kasse and Mcquaid (2000) [KAS 00]

8.10 IMPLEMENTING SCM IN VERY SMALL ENTITIES
WITH ISO/IEC 29110

As described in the management and engineering guide of the Basic profile of the
ISO 29110 standard for a small organization, a simple approach to CM is to perform
the following tasks [ISO 11e]:

– identify components;

– describe the standards that will be used during a typical project;

– formalize the reviews before a configuration item is deposited in the repository;

– establish a simple change control process;

– establish the library and control access;

– manage change requests;

– occasionally check that the backups to the repository were correctly performed.

ISO 29110 recommends that a repository be set up to store work products
and their versions. Table 8.4 describes one task of the software process associated
with CM.

Table 8.4 A CM task of ISO 29110 [ISO 11e]

Role Task list Input work products Output work products

TL SI.3.8 Incorporate the
Software Design, and
Traceability Record to the
Software Configuration as
part of the baseline.

Incorporate the Test Cases,
and Test Procedures to the
project repository.

Software Design
[verified]

Test Cases, and Test
Procedures [verified]

Traceability Record
[verified]

Software
Configuration
– Software Design

[verified, baselined]

– Test Cases, and Test
Procedures [verified]

– Traceability Record
[verified, baselined]

330 Chapter 8 Software Configuration Management

Table 8.5 shows an example of the suggested content of a change request as pro-
posed by the ISO 29110 management guide. The column on the right shows the source
of the request, that is, who asked for the change. In this example, a change request
could be raised by the customer, by the development team or the project manager.
Note that the states of the request are also listed at the bottom of the description
column.

Table 8.5 A Change Request as Recommended by ISO 29110 [ISO 11e]

Name Description Source

Change request Identifies a software, or documentation
problem or desired improvement, and
requests modifications. It may have the
following characteristics:

– identifies purpose of change;

– identifies request status;

– identifies requester contact information;

– impacted system(s);

– impact to operations of existing
system(s) defined;

– impact to associated documentation
defined;

– criticality of the request, date needed.

The applicable statuses are: initiated,
evaluated, and accepted.

Customer
Project manager
Software

implementation

8.11 SCM AND THE SQAP

The IEEE 730 standard [IEE 14] defines the requirements for SQA activities during
the project. As we said earlier, each project needs to have one SQAP. Here are the
questions that the project team must answer before project planning is approved:

– has an appropriate and effective SCM strategy, including change control pro-
cesses, been developed?

– has the completeness and consistency of CI been ensured?

– has consistency and traceability been planned between CI?

– has the storage, handling, and delivery of CI been controlled?

The SQAP should describe the SCM activities that are planned, how they should
be performed, and who is responsible for SCM tasks. This plan should also define the

8.12 Success Factors 331

methods and tools used to conserve, store, secure and control software records and
artifacts, and all their versions, created during all phases of the software life cycle.

During project execution, the team should ask the following questions related to
the evaluation of their adherence to the SQAP as well as the tracking of the status of
the CIs:

– has an appropriate and effective SCM strategy, including change control pro-
cesses, been implemented?

– have items generated by the process or project been identified, defined, and
baselined?

– are the requirements allocated to the system elements and their interfaces trace-
able to the customer’s requirements baseline?

– have modifications and releases of the items been controlled?

– has documentation been maintained in accordance with defined criteria?

– have modifications and releases been made available to affected parties?

– has the status of the items and modifications been recorded and reported?

– has the completeness and consistency of CI been ensured?

– has the storage, handling, and delivery of CI been controlled?

Concerning the tracking of change requests and problem reports, the following
questions should be addressed:

– has an appropriate and effective problem management strategy been devel-
oped?

– are problems recorded, identified, and classified?

– are problems analyzed and assessed to identify an acceptable solution(s)?

– are problem resolutions implemented?

– are problems tracked to closure?

– is the status of all problems reported and known?

If a project is required by its customer to have a stand-alone CM plan, then infor-
mation listed in IEEE 730 could be used to develop a CM plan separate from the
SQAP. IEEE 828 could be used to develop the CM plan. In such a case, the SQAP
would have to refer to the CM plan regarding CM issues.

8.12 SUCCESS FACTORS

Following are some factors related to an organization’s CM practices that can promote
or discourage the development of quality software.

332 Chapter 8 Software Configuration Management

Factors that Foster Software Quality

1) Organizational culture and management support for SCM.

2) Presence of a SCM vision, mission, and policies.

3) Adequate resource allocation and SQA support.

4) Early CM planning and effective communications.

5) Stable toolset and competent CM practitioners.

6) SCM certification and training available.

Factors that may Adversely Affect Software Quality

1) No management support for SCM.

2) No SCM training or certification available.

3) Rigid and complex SCM process.

4) Lack of required human resources and necessary budgets for SCM execution during
the project.

5) Uncoordinated communications with the CCB.

Here are some excuses that you may hear when you want to implement SCM in
your project [SPM 10]:

– SCM applies only to code;

– SCM applies only to documents;

– SCM is not required because we use the latest technology and agile processes;

– It’s not such a big project;

– It slows down our technical staff when it’s time to make a quick change during
testing;

– We made the change without bothering to submit a change request because we
want a satisfied customer and this is only internal paperwork;

– We do not need a separate CM system because it is automatically done by the
IDE tool we use for development;

– Changing documentation is a thing of the past-we change the source code
directly;

– We do not have the SCM on many of our external interfaces because they are
the responsibility of other agencies;

– SCM is a practice used by the department of defense (DoD) and we do not
make software for the DoD;

8.14 Exercises 333

– We do not put software architecture and detailed design under the constraint
of formal change management during development because it limits our flexi-
bility and productivity;

– We do not put the operating software, custom software, libraries and compilers
under SCM because its available online.

8.13 FURTHER READING

Casavecchia D. Reality configuration management, Crosstalk, November 2002.
Djezzar L. Gestion de configuration: maitrisez vos changements logiciels, Dunod, Paris,

2003.
Johanssen Hass A. Finding CM in CMMI, Crosstalk, July 2005.
Leishman T. and Cook D. But I Only Changed One Line of Code!, Crosstalk, 2003.
Phillips D. Go Configure, Understanding the principles and promise of configuration

management, STQE, vol. 4, Issue 3, May–June 2002.
Rinko-Gay W. Preparing to choose a CM Tool, STQE Magazine, July–August 2002.
Wiegers K. Creating a Software Engineering Culture, Control Change Before It Controls

You. Dorset House, New York, 1996, Chapter 15.

8.14 EXERCISES

8.1 Present a definition and the expected results of using SCM.

8.2 What are the issues/problems addressed by SCM?

8.3 What are the six SCM information categories that need to be included in a software
configuration management plan (SCMP)?

8.4 Why do we need to place our tools, software and the libraries used for developing a
software under configuration management?

8.5 How do we identify the CI to be controlled in a project?

8.6 List the potential tasks to be executed when changing an existing requirement in an
ongoing project. Using this list, create a checklist of items that are impacted when
there is a change to an existing requirement during a project.

8.7 Extend the checklist developed in question 6 by adding the software items affected by
the proposed requirement change.

8.8 Describe the typical branching strategy used to manage the software configuration of
source code during a software development project?

8.9 Develop a process map that explains how to process a change in your software project.

8.10 Your project includes firmware. Are the SCM concepts that apply to hardware and
software independently also applicable to the firmware portion of your project?

8.11 Your manager asks you to perform an impact assessment for a major change planned in
your portion of the existing software. He also sends you a copy of the new requirements

334 Chapter 8 Software Configuration Management

to be added to the software. Develop a list of SCM factors you need to consider in order
to provide a better estimate of this impact (e.g., effort, schedule, etc.).

8.12 Regarding the criteria for selecting the software CI: what are the consequences (e.g.,
risks) of the lack of choosing all the necessary CI for your project?

8.13 According to the CMMI-DEV model, what is suggested in a SCM report?

8.14 Write a checklist for a FCA.

8.15 Write a checklist for an audit of physical configuration.

Chapter 9

Policies, Processes, and
Procedures

After completing this chapter, you will be able to:

– understand the documentation system of an organization;

– understand the role of a policy in an organization;

– understand the importance of software process documentation;

– understand how to document processes and procedures;

– understand a few popular notations such as ETVX, IDEF, and BPMN;

– understand the requirements of the ISO 12207 standard and the CMMI® model
concerning the documentation of processes and procedures;

– understand the process notation of the ISO/IEC 29110 management and engi-
neering guides;

– understand the personal improvement process;

– understand the relationship between policies, processes, procedures, and the
software quality assurance plan.

9.1 INTRODUCTION

An article of the online encyclopedia Wikipedia, summarizes critics’ comments about
software development as follows: “In traditional engineering, there is a clear consen-
sus about how things should be built, how they should respect engineering standards
and what risks must be taken into account. If an engineer does not comply with his
code of practices and something breaks down, he can be sued. There is no such con-
sensus yet, in software engineering, where everyone is promoting his own methods
and tools, claiming their advantages in productivity, which, in general are not sup-
ported by any objective and scientific evidence whatsoever.”

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

335

336 Chapter 9 Policies, Processes, and Procedures

“Future large systems will no longer be delivered late, with cost overruns and poor quality,
and they will probably not be delivered at all.”

Humphrey et al. (2007) [HUM 07]

In this chapter, we present approaches that address some of the issues with this
criticism. We will use, as in previous chapters, known standards such as the ISO
standards and the CMMI® model, and present how to use and adapt these standards
to address the problems and needs of the organization. The SWEBOK Guide (see
Figure 9.1) includes a knowledge area that describes the importance of processes in
software engineering and the existing knowledge that should be used.

We will not discuss process assessment or measurement here as these topics are
discussed in detail in other chapters of this book.

We know that a quality management system includes a number of documents.
Figure 9.2 shows an example of a pyramid model to classify the many types of doc-
uments found in an organization. Quality objectives and organizational policies are
normally at the top of the pyramid. At the second level, we find processes used at

Figure 9.1 The SWEBOK® Guide software engineering process knowledge area [SWE 14].

9.1 Introduction 337

Policies

Processes

Procedures

Quality Records

Why

What, who and where

How and using what

Proof of execution

Quality System
and responsibilities

Process descriptions to
enact the quality system policies

How to execute the procedures using
detailed descriptions, templates and checklists

Documents showing that the quality
system requirements have been used

Figure 9.2 Example of a quality system documentation model.

all levels of the organization. At the third level, we find more detailed procedures,
checklists and templates/examples to help ensure efficient daily operations. Finally,
at the base of this documentation pyramid, we find the quality records that are the
accumulated evidence, or proof, resulting from the execution of both processes and
procedures in accordance with the organization’s policies and quality objectives.

In this book, we propose an organizational process approach which entails the
daily use of a quality management system consisting of organizational processes that
are identified, formalized, interact with each other, and are managed and improved.
In this chapter, we describe how to develop, document, and improve policies, pro-
cesses, and procedures to ensure the effectiveness and efficiency of the organization.
Remember that software quality assurance (SQA) plays a key role in defining, and
particularly in improving, the organizational processes in many organizations, since
SQA has the mission of auditing these processes.

Efficiency

Relationship between the result achieved and the resources used.

Effectiveness

Extent to which planned activities are realized and planned results are achieved.
ISO 9000

338 Chapter 9 Policies, Processes, and Procedures

Two key reference documents will be used in this chapter: the ISO 9000 standard
and the CMMI-DEV model. The ISO 9001 standard [ISO 15] is useful with respect
to how a quality management system is implemented. As illustrated in the follow-
ing text box, having previously identified its business objectives, the organization
must, among other things, develop its quality objectives, policy, and organizational
processes.

Quality Management Systems Approach of ISO 9000

An approach to developing and implementing a quality management system consists of
several steps including the following:

– determining the needs and expectations of customers and other interested parties;

– establishing the quality policy and quality objectives of the organization;

– determining the processes and responsibilities necessary to attain the quality objectives;

– determining and providing the resources necessary to attain the quality objectives;

– establishing methods to measure the effectiveness and efficiency of each process;

– applying these measures to determine the effectiveness and efficiency of each process;

– determining means of preventing nonconformities and eliminating their causes;

– establishing and applying a process for continual improvement of the quality manage-
ment system.

Such an approach is also applicable to maintaining and improving an existing quality
management system.

An organization that adopts the above approach creates confidence in the capability
of its processes and the quality of its products, and provides a basis for continual improve-
ment. This can lead to increased satisfaction of customers and other interested parties and
to the success of the organization.

ISO 12207 [ISO 17] also asks the software organization to develop its policies
and processes. The business perspective is comprised in its portfolio management
process. Note that this standard also requires that the software development life cycle
models used, such as waterfall, iterative, or agile be formalized. We briefly discussed
this in previous chapters. We will address this in more detail in the chapter entitled
“Risk management” where the criteria for selecting the appropriate life cycle for a
project is associated with its criticality and perceived risks.

Life Cycle Model Management Process of ISO 12207

Purpose

The purpose of the Life Cycle Model Management Process is to define, maintain, and
assure availability of policies, life cycle processes, life cycle models, and procedures for
use by the organization with respect to the scope of this International Standard.

9.1 Introduction 339

This process provides life cycle policies, processes, and procedures that are consis-
tent with the organization’s objectives, that are defined, adapted, improved, and main-
tained to support individual project needs within the context of the organization, and that
are capable of being applied using effective, proven methods and tools.

Outcomes

As a result of the successful implementation of the Life Cycle Model Management Pro-
cess:

– organizational policies and procedures for the management and deployment of life cycle
models and processes are established;

– responsibility, accountability, and authority within the life cycle policies, processes,
models, and procedures are defined;

– life cycle processes, models, and procedures for use by the organization are assessed;

– prioritized process, models, and procedure improvements are implemented.

The CMMI-DEV model [SEI 10a] contains several process areas that include
topics about software development and process improvement. In this chapter, the fol-
lowing processes are presented:

– organizational process definition;

– organizational process focus;

– organizational performance management;

– organizational process performance

– causal analysis and resolution;

– organizational training.

“It is always faster to do the job right the first time.”
Watts S. Humphrey

Only the first two process areas will be described in this chapter. The reader
should refer to the staged representation of the CMMI-DEV for descriptions of the
other process areas:

Organizational process definition [SEI 10a]:

– The purpose of the organizational process definition is to establish and main-
tain a usable set of organizational process assets, work environment standards,
and rules and guidelines for teams.

– This process area has one specific goal (SG) “Establish Organizational Process
Assets” and the following seven specific practices (SP):

340 Chapter 9 Policies, Processes, and Procedures

◦ SP 1.1 Establish Standard Processes
◦ SP 1.2 Establish Life Cycle Model Descriptions
◦ SP 1.3 Establish Tailoring Criteria and Guidelines
◦ SP 1.4 Establish the Organization’s Measurement Repository
◦ SP 1.5 Establish the Organization’s Process Asset Library
◦ SP 1.6 Establish Work Environment Standards
◦ SP 1.7 Establish Rules and Guidelines for Teams

Organizational process focus [SEI 10a]:

– The purpose of organizational process focus is to plan, implement, and deploy
organizational process improvements based on a thorough understanding of
current strengths and weaknesses of the organization’s processes and process
assets.

– This process area has the following three SG and nine SP:
◦ SG 1 Determine Process Improvement Opportunities

� SP 1.1 Establish Organizational Process Needs
� SP 1.2 Appraise the Organization’s Processes
� SP 1.3 Identify the Organization’s Process Improvements

◦ SG 2 Plan and Implement Process Actions
� SP 2.1 Establish Process Action Plans
� SP 2.2 Implement Process Action Plans

◦ SG 3 Deploy Organizational Process Assets and Incorporate Experiences
� SP 3.1 Deploy Organizational Process Assets
� SP 3.2 Deploy Standard Processes
� SP 3.3 Monitor the Implementation
� SP 3.4 Incorporate Experiences into Organizational Process Assets

The CMMI model pays particular attention to the artifacts and the means that are
deployed to support the process. The following text box describes some of them.

Process Asset

Anything the organization considers useful in attaining the goals of a process area.

Organization’s Process Asset Library

A library of information used to store and make process assets available that are useful
to those who are defining, implementing, and managing processes in the organization.

This library contains process assets that include process related documentation such
as policies, defined processes, checklists, lessons learned documents, templates, stan-
dards, procedures, plans, and training materials.

CMMI

9.2 Policies 341

The CMMI model proposes that the process assets are regrouped into an organi-
zational process repository. This repository can be digital, such as an organizational
intranet or wiki. In this way, all employees can have access to the latest versions of the
process information. In addition to the items listed in the last text box, this intranet
may contain examples of already developed/validated documents originating from
completed projects. Given that an organization operates in a particular industry and
business domain, software projects could share/reuse some artifacts that are similar
across projects, such as plans, configuration management, and quality assurance pro-
cesses. The project manager who is starting a new project would be advised to consult
the organizational process repository to identify reusable and customizable artifacts
before creating his own. This could not only save effort by reusing items, but also
allows him to benefit from the experience of others.

9.1.1 Standards, the Cost ofQuality, and Business Models

The cost of quality and business models concepts were presented earlier. The cost
of quality, policies, processes, and procedures are classified as preventive cost ele-
ments, which are costs incurred by an organization to prevent the occurrence of errors
in various development or maintenance processes. Detection costs are the verifica-
tion and appraisal costs of software products or services during the various life cycle
phases of a software development project. Detection costs also represent the addi-
tional cost of controlling these internal standards (e.g., the cost of their maintenance
and management). Appraisal costs represent the associated audit cost invested to
determine compliance as well as the costs associated with the certification/attestation/
compliance to a standard such as ISO 9001 or a process model like the CMMI for
development.

Table 9.1 presents the different preventive, detection or appraisal costs. Develop-
ment costs, training, and implementation of policies, processes, and procedures are
considered preventive costs.

Policies, processes, and procedures are commonly used in the following busi-
ness models: custom systems written on contract and commercial and mass-market
firmware. In these business models, policies, processes and procedures are used to
control development and minimize errors and risks. With respect to the custom sys-
tems written on contract business model, it is the customer who decides whether or
not to impose his processes and procedures on the supplier.

In the following sections, we describe the policies, processes, and procedures of
the quality system documentation pyramid for the software organization.

9.2 POLICIES

Essentially, organizational policies aim at showing, publicly and officially, how the
software organization intends to meet its business objectives. They are typically

342 Chapter 9 Policies, Processes, and Procedures

Table 9.1 Preventive and Detection (or Appraisal) Costs Related to Policies, Processes, and
Procedures

Major category Sub-category Definition Typical cost element

Preventive costs Establish the
foundation of the
quality
management
system.

Efforts to define
quality, quality
objectives and
thresholds, and
quality standards.
Quality
compromise
analysis.

Definition of
acceptance test
success criteria and
of quality
standards.

Interventions oriented
toward projects and
processes.

Efforts to prevent
defects or to
improve the quality
of the processes.

Training, process
improvement,
measurement and
analysis.

Detection or
appraisal costs

Discover the state of
the product.

Discover the
non-conformity
level.

Tests, software
quality assurance.
Inspections,
reviews.

Ensure that quality
objectives are met.

Quality control
mechanism.

Product quality
audits, new
versions delivery
decision criteria.

Source: Adapted from Krasner (1998) [KRA 98].

developed and approved by upper management and, once deployed, help in guiding
projects and product development decisions as well as the behavior of personnel. The
term “organizational directive” is also used as a synonym to the term “organizational
policy.”

Policy

Clear and measurable statements of preferred direction and behavior to condition the
decisions made within an organization (ISO/IEC 38500).

Organizational Policy

A guiding principle typically established by senior management that is adopted by an
organization to influence and determine decisions (CMMI).

9.2 Policies 343

Quality Policy

Overall intentions and direction of an organization related to quality as formally expressed
by top management.

Note 1: Generally the quality policy is consistent with the overall policy of the orga-
nization, can be aligned with the organization’s vision and mission and provides a
framework for the setting of quality objectives.

Note 2: Quality management principles presented in this International Standard can
form a basis for the establishment of a quality policy (ISO 9000).

In order for policies to be effective, management should:

– ensure that the commitment is clearly communicated to all levels of the orga-
nization;

– initiate, manage, and monitor the implementation of policies;

– require that a strong business case be presented before accepting any deviations
to the policy;

– show their support for the policies by providing adequate resources (e.g., bud-
get, competent personnel and appropriate tools) for their implementation, mon-
itoring, evaluation, and improvement;

– provide adequate training to support the understanding of the daily execution
of the policies.

In the CMMI, one of the generic practices, the GP 2.1, requires that the organi-
zation establish and maintain an organizational policy for planning and performing
a process. The organization may write a policy that covers all the software process
areas or one different directive for each CMMI process area. The following text box
describes what is intended and asked for in the CMMI model.

GP 2.1 Establish an Organizational Policy [SEI 10a]

Establish and maintain an organizational policy for planning and performing the process.
The purpose of this generic practice is to define the organizational expectations for

the process and make these expectations visible to those members of the organization
who are affected. In general, senior management is responsible for establishing and com-
municating guiding principles, direction, and expectations for the organization.

Not all direction from senior management will bear the label “policy.” The exis-
tence of appropriate organizational direction is the expectation of this generic practice,
regardless of what it is called or how it is imparted.

344 Chapter 9 Policies, Processes, and Procedures

For example, for the “project planning” process area, the CMMI asks that the
organization establish an organizational policy for their “project planning” activi-
ties, such as: “This Directive establishes organizational expectations concerning the
estimates for internal and external commitments and for developing the project man-
agement plans” [SEI 10a].

Process Owner

Person (or team) responsible for defining and maintaining a process.
Note: At the organizational level, the process owner is the person (or team) respon-

sible for the description of a standard process; at the project level, the process owner is
the person (or team) responsible for the description of the defined process. A process may
therefore have multiple owners at different levels of responsibility.

ISO 24765 [ISO 17a]

The following text box provides an actual policy example and describes the pol-
icy objectives, scope, target processes, and the responsibilities of key stakeholders of
an organization of about 35 software engineers. This company uses the concept of
process owner.

Acme Corporation – Software Policy

Introduction

It is a policy at Acme to use a number of software engineering processes to achieve its
project quality objectives, estimated costs and schedule. As a reference framework for
the development of software engineering processes, Acme uses the Software Engineering
Institutes’ Capability Maturity Model.

Software based systems are strategic to the Acme business market. Software is a
competitive differential factor for our products. The basic principle of this policy is that
personnel must use predictable software engineering processes to design, develop and
maintain software products to ensure they are reliable, scalable and portable.

The policy applies to the following software products or for the purchase of software
products that require a capital investment:

– real-time software;

– software that supports software development (e.g., compilers, editors, operating sys-
tems, etc.);

9.3 Processes 345

– scientific software (e.g., modeling, simulation, test, etc.);

– embedded software;

– artificial intelligence software.

Objectives

Once the system requirements are defined, the software engineering process (SEP) defines
the reference framework to be applied to research, design, develop, maintain or acquire
the software products. In turn, the SEP provides a management tool for Acme to ensure
that the personnel, products and processes are supported by a set of methods and tools
capable of meeting the performance objectives set by the company.

Scope of the Policy

The software engineering process applies to the following activities:

– engineering: for software used during engineering design, coding and debugging –
this also includes reverse engineering (refactoring) activities carried out to maintain
or improve existing systems and activities to improve or correct software development
defects;

– integration and testing: for software used for activities concerning the integration and
testing of our products or services;

– acquisitions: for software used to support the selection and acquisition activities of
software packages (e.g., commercial-off-the-shelf software) and software developed
by an external supplier.

The process can be adapted to meet specific project requirements and constraints.
However, minimum requirements apply and the adaptation and associated risks must be
approved by the process owner. Conflicts concerning the adaptation of the software pro-
cess, between the process owner and a project manager, will be resolved by the vice
president responsible for the project.

The software engineering process is continuously improved to meet the following
objectives:

– ensure the quality of products and services that meet the customer requirements;

– ensure technical compliance of delivered products and services;

– minimize negative impacts on schedule and cost.

9.3 PROCESSES

At the second level of the pyramid illustrated in Figure 9.2, we find processes. The
processes are the implementation of policies that guide the development of products
and services. A process describes what must be done to produce the expected results.
We will describe procedures in the next section. Procedures are very detailed and
describe how to do a job, step by step.

346 Chapter 9 Policies, Processes, and Procedures

Process

Set of interrelated or interacting activities that use inputs to deliver an intended result.

Note 1: Whether the “intended result” of a process is called output, product or service
depends on the context of the reference.

Note 2: Inputs to a process are generally the outputs of other processes and outputs
of a process are generally the inputs to other processes.

Note 3: Two or more interrelated and interacting processes in series can also be
referred to as a process.

Note 4: Processes in an organization are generally planned and carried out under
controlled conditions to add value.

Note 5: A process where the conformity of the resulting output cannot be readily or
economically validated is frequently referred to as a “special process.”

ISO 9000

Process Description

Documented expression of a set of activities performed to achieve a given purpose.

Note: A process description provides an operational definition of the major compo-
nents of a process. The description specifies, in a complete, precise, and verifiable
manner, the requirements, design, behavior, or other characteristics of a process. It
also may include procedures for determining whether these provisions have been
satisfied. Process descriptions can be found at the activity, project, or organizational
level.

ISO 24765 [ISO 17a]

Product

Output of an organization that can be produced without any transaction taking place
between the organization and the customer.

Note 1: Production of a product is achieved without any transaction necessarily tak-
ing place between provider and customer, but can often involve this service element
upon its delivery to the customer.

Note 2: The dominant element of a product is that it is generally tangible.

Note 3: Hardware is tangible and its amount is a countable characteristic (e.g., tyres).
Processed materials are tangible and their amount is a continuous characteristic (e.g.,
fuel and soft drinks). Hardware and processed materials are often referred to as
goods. Software consists of information regardless of delivery medium (e.g., com-
puter programme, mobile phone app, instruction manual, dictionary content, musical
composition copyright, driver’s license).

ISO 9000

9.3 Processes 347

A defined (i.e., formalized) and documented process provides the organization
with [SEI 10a]:

– a defined framework for planning, monitoring, and managing the work;

– a guideline to do the job correctly and completely describing a series of sequen-
tial steps to do the work;

– a basis for measuring the work and monitoring progress against targets, and
allows for refining the process in future iterations;

– a basis for refining the process;

– a planning and quality management tool for the products being developed;

– procedures to be used to coordinate work in order to produce a common
product;

– a mechanism that allows team members to support each other throughout the
project.

Acme Corporation – Software Policy

To achieve these objectives, the following process should be used:

– software development process;

– software maintenance process;

– planning and project monitoring processes;

– configuration management process;

– software quality assurance process;

– management process of outsourcing software;

– software reverse engineering process.

Responsibilities

Process Owner

The manager of the software engineering department is the owner of the software engi-
neering process. He is responsible for defining, implementing and maintaining a software
engineering organization that includes processes, people and tools needed to develop soft-
ware products at the lowest cost and fastest time to market. He is also responsible for
informing project managers of the risks associated with their project plans and approving
the software related sections. In this role, he is the leader of the software process improve-
ment group. As the leader, he is responsible for approving the process changes to ensure
that the objectives of Acme are met.

348 Chapter 9 Policies, Processes, and Procedures

The Software Process Improvement Group

The software process improvement group is responsible for defining, maintaining and
improving the software assets, verifying and validating the effectiveness and efficiency
of the software engineering process by continually measuring their performance. The
group is also responsible for managing the software sections of the process improvement
plan.

Project Team Members

Project team members must use the software engineering processes as approved in the
project plan. They are responsible for informing the project manager and the process
owner of all risks related to their use or the needed improvements they believe should be
done to the software engineering processes.

ISO/IEC TR 24774 - Systems and Software Engineering — Life Cycle
Management — Guidelines for Process Description [ISO 10a]

Intended Audience

The editors, working group members, reviewers and other participants in the development
of process standards and technical reports.

This technical report describes the following process elements:

– the title is a descriptive heading for a process;

– the purpose describes the goal of performing the process;

– the outcomes express the observable results expected from the successful performance
of the process;

– the activities are a list of actions that may be used to achieve the outcomes. Each activity
may be further elaborated as a grouping of related lower level actions;

– activities are sets of cohesive tasks of a process;

– the tasks are specific actions that may be performed to achieve an activity. Multiple
related tasks are often grouped within an activity;

– the information items are separately identifiable bodies of information produced and
stored for human use during a system or software life cycle.

When documenting a process, we must think of those who will use it. This state-
ment may seem obvious, but often processes are documented for the wrong audi-
ence. What are audiences? They are, for example, developers who have a wealth of
knowledge and experience. Another audience can be expert developers that require
very little documented processes (see Figure 9.3). Experts are like experienced pilots.

E
ndS
ta

rt

7.
1.

1
A

ss
ig

n
pr

oj
ec

t
C

M
 p

la
n

to
 C

M
 le

ad

7.
1.

2
D

ev
el

op
 p

ro
je

ct
 C

M
 p

la
n

7.
1.

3
R

ev
ie

w
 p

ro
je

ct
 C

M
 p

la
n

7.
1.

4
S

et
-u

p
pr

oj
et

 C
M

 s
ys

te
m

7.
1.

6
A

pp
ro

ve
 p

ro
je

ct
 C

M
pl

an

P
ro

je
ct

m
an

ag
er

C
o

n
fi

g
u

ra
ti

o
n

m
an

ag
em

en
t

le
ad

Q
u

al
it

y
as

su
ra

n
ce

N
o

Y
es

O
u

tp
u

ts
/e

xi
t

cr
it

er
ia

*
P

ro
je

ct
 C

M
 p

la
n

m
at

ch
es

 C
M

 s
ta

nd
ar

d.
*

P
ro

je
ct

 C
M

 p
la

n
is

 r
ev

ie
w

ed
 a

nd
 a

pp
ro

ve
d.

*
C

C
B

 a
nd

 C
M

 le
ad

 a
re

 id
en

tif
ie

d.
*

C
M

 s
ys

te
m

 is
 s

et
 u

p
ac

co
rd

in
g

to
 th

e
se

t u
p

C
M

 s
ys

te
m

 p
ro

ce
du

re
.

7.
1.

5
A

pp
ro

ve
?

F
ig

ur
e

9.
3

Pr
oc

es
se

s
do

cu
m

en
te

d
fo

r
an

ex
pe

rt
.

So
ur

ce
:A

da
pt

ed
fr

om
O

ls
on

(2
00

6)
[O

L
S

06
].

350 Chapter 9 Policies, Processes, and Procedures

Table 9.2 Description of Process Guidance for Intermediate Software Process Users
[OLS 06]

Process step ID Role Process step description

7.1.1 Project manager Assign the responsibility for configuration
management planning

At the appropriate time, typically during the project
planning phase, the project manager assigns the
configuration management (CM) plan development
work.

Advice
An individual, responsible for CM should have

experience in the installation and execution of CM
systems. His supervisor should also have been
trained in CM.

7.1.2 Configuration
Management
manager

Develop the CM plan
The configuration management manager develops the

CM plan using organizational standards and CM
guidelines. The organizational process references
and standards must be used.

Advice
CM Plan and templates, examples and guidelines can

be found on the organizational process repository
that is accessible on the Intranet of the software
division.

Once behind the controls, they commonly only use checklists. They do not have to
dig through detailed manuals to find out what to do next.

Other audiences can be junior programmers and new employees of the organi-
zation. They require more detailed processes. Documentation may include a tutorial
or contain explanatory material. Between these types of audiences are intermediate
users that still cannot be referred to as expert process users but do not need as much
information as beginners. For this last audience, we could add to Figure 9.3 the more
detailed description shown in Table 9.2.

A well-thought out, ready and usable process includes the following elements:
a definition of the process, inputs required for its execution, the impacted agents,
resources needed (e.g., people, equipment, time, and budget) and its exit criteria.
A process defines precisely what to do by listing the tasks, in sufficient detail, to
guide its user during its execution. Processes should provide sufficient details for team
members and individuals in order for them to develop detailed project plans and then
be able to execute the planned process to guide and monitor their work [SEI 09]. The
following sections describe process notations used to graphically represent processes.

9.4 Procedures 351

When reviewing a process, you should be able to answer the following questions
[OLS 94]:

– Does this process refer to at least one of the organization’s policies?

– Why is this process executed?

– Who performs this process (e.g., its roles.)?

– What software products are used by this process?

– What tools are used?

– What software products are produced by this process?

– When does the process begin?

– When does this process end?

– What happens to the products developed by this process?

– How is this process implemented (e.g., what are the procedures)?

– Where is the process implemented?

– What is the typical effort needed to execute this process?

– What other resources have been used to execute this process?

– Is the process terminology used understandable in your environment?

– Can the performance of this process be measured?

9.4 PROCEDURES

Procedures support process execution. They define and clarify each step of the pro-
cess. These procedures can take many forms: they may be descriptions of actions to
take, templates of documents and forms that include instructions on how to use them,
or even checklists that can be referred to or completed.

Procedure

Specified way to carry out an activity or a process.
Note 1: Procedures can be documented or not.

ISO 9000 [ISO 15b]
Ordered series of steps that specify how to perform a task.

ISO/IEC 26514 [ISO 08]

352 Chapter 9 Policies, Processes, and Procedures

Template

A partially complete document in a predefined format that provides a defined structure
for collecting, organizing, and presenting information and data.

PMBOK® Guide

When a procedure has been developed, the checklist, as described in the next
text box, can be used to verify that it contains all the required elements of a good
procedure.

During the review of a procedure, you should be able to answer yes to the following
questions [OLS 94]:

– Does it support at least one process?

– Are the procedural steps described executed in the right order?

– Is each step of the procedure clearly and correctly described?

– Is the terminology used objective?

– Is the terminology used understandable in your environment?

– Does this procedure make sense in your environment?

– Can it be applied?

– Can you measure the successful use of the procedure?

9.5 ORGANIZATIONAL STANDARDS

ISO 9001 defines the work environment as a set of conditions under which daily
work is performed. Organizational standards and processes define expectations and
acceptable performance by providing clear definitions that guide daily activities, the
collection and use of data, and coding standards for example. These standards are
described so that they can be applied uniformly in all development projects, mainte-
nance and operational activities. These standards also enable a developer or program-
mer to work the same way from one project to another. In this way, they do not have
to learn a new programming guide for a particular project, increasing the productivity
of the development team who has to develop the source code, review and test it. Table
9.3 shows some elements of a C++ program guide used at NASA.

These types of conventions facilitate the understanding of documents and can
reduce maintenance time. A new employee will be more quickly productive once he

9.6 Graphical Representation of Processes and Procedures 353

Table 9.3 Example of Coding Standard Elements [NAS 04]

Naming convention Comments

Heading conventions Language instruction recommended use
(functions, variables, constant, pointers,
operators, etc.)

Readme guidelines Empty lines, spacing and identification
conventions

Comments conventions (e.g., comments
should be next to the instructions to be
commented.)

Table and figure conventions

Exception handling conventions Decision branching conventions
Use of uppercase and lowercase convention

has learned the local conventions, rather than disturb everyone to ask them how work
should be done. It is also possible to use tools to automatically check compliance
with organizational conventions. In this case, code peer reviews will also be easier
as the guidelines are published and should be used by all programmers. Reviewers
can focus on detecting more significant problems and defects and will not spend a
significant amount of time on coding conventions.

The organizational standards also define, among other things, software approved
for project use, developers that are approved to have a copy of certain software, and
describe how that software can be obtained. Similarly, the standards can define the
hardware characteristics that development projects can use, such as number of plat-
forms, type of computers, and approved peripherals that are fully supported by the
acquisition department, operation, and maintenance of the organization.

9.6 GRAPHICAL REPRESENTATION OF PROCESSES
AND PROCEDURES

The best and most effective documentation is a concise graphical representation of a
document, a process, or a procedure. It may include, in addition to tasks to be exe-
cuted, its inputs and outputs, input and output criteria, measures, roles, audit activ-
ities, tools, checklists, templates, and examples. There are many techniques avail-
able to help document processes and procedures. In this section, we present some of
the graphical notations that are commonly used. A few of these are very simple to
use and do not require any tool, while others are supported by specialized software.
Before diving into the documentation representation on your intranet, the impor-
tant question is: why should we graphically represent and document processes and
procedures?

354 Chapter 9 Policies, Processes, and Procedures

Here are some of the reasons to document processes and procedures graphically
(adapted from [OLS 94], [SEI 10a]):

– allows for easier process improvement—it is difficult to improve a process
when it is in the mind of developers;

– improves productivity—documented processes, which include the use of best
practices, should help to improve overall organizational productivity;

– facilitates individual knowledge capture—if experienced people leave an orga-
nization, a part of their knowledge will have been documented and will remain;

– reduces defects—documented processes help reduce and prevent errors;

– saves time and money—users of documented processes can reduce develop-
ment time and reduce rework;

– allows for measurement—when a process is documented, it is possible to mea-
sure its characteristics, such as the effort made to implement it and the size and
number of defects it generates;

– facilitates training—documents describing the processes and procedures can
be used to train new employees; and

– facilitates audits—preparing an audit will be faster when the organization can
prepare the documentation requested by the auditor to demonstrate compliance
to a standard for a project.

Here are some basic principles to guide the development of the process and pro-
cedure documentation (adapted from [OLS 94], [SEI 10a]):

– We must keep the organization’s business objectives and the elements that
make these objectives difficult to attain in mind—in some cases, a process doc-
umentation project becomes the ultimate goal. The processes must be used to
achieve the business objectives;

– The repository of assets should contain the description of the development life
cycle of the organization;

– We must use only the relevant information for each type of document (e.g., the
information concerning training should only be in the training materials and
policies should only contain information that does not change frequently). By
locating the relevant information only where it belongs in the documentation
reference model, developers will always know where to look for the informa-
tion;

– It is necessary to manage changes and improvements—once defined, policies
should not change frequently. A process will probably not need to change if
only one step in one of its procedures should be amended;

– Use organizational standards and conventions to document processes and pro-
cedures (process descriptions and procedures should be consistent to allow for

9.6 Graphical Representation of Processes and Procedures 355

their efficient use, and processes must answer the following questions: why,
what, who, when, where, or be described according to the convention used,
such as the Entry-Task-Verification-eXit (ETVX) graphical notation);

– Use drawings or mathematical formulas and complete the description of pro-
cesses and procedures using text;

– When possible, use the templates as vehicles to communicate the information
which is reflected in a procedure—we then avoid creating procedures that will
have to be maintained;

– Add a checklist to the document template that will be used by the author to
ensure that the document meets the organization’s standards and can also be
used for quality assurance during internal audits;

– Use a label to identify each document—developers want to find information
quickly;

– Separate the process into cohesive chunks—it will be easier to understand a
process that is broken down into logical parts, or sub-processes, instead of a
complex process on several pages.

Processes should also be documented according to the level of expertise of its
users. For example, you can use three levels of expertise: expert, intermediate, and
beginner (adapted from [OLS 94], [SEI 10a]):

– for expert—the documentation includes just enough information for use by
people who have implemented the process many times and just need a
reminder, as these people use the process often;

– for intermediate—the intermediate level uses the expert level documentation,
but the objective of the activity is added as well as some tips or applicable
lessons learned;

– for beginner—the beginner level is aimed at people that are new to the pro-
cess, that is, they have not yet used the process, and are in need of more detailed
guidelines and training. The beginner level uses the documentation of the inter-
mediate level to which is added training material. Beginners should feel free
to use the training materials until they are familiar with the process.

“If you cannot describe what you are doing as a process, you do not know what you do.”
W. Edwards Deming

356 Chapter 9 Policies, Processes, and Procedures

9.6.1 Some Pitfalls to Avoid

Even if documentation provides advantages, we must pay attention to some docu-
mentation difficulties. Here are some pitfalls to avoid:

– large and complex documentation—when documentation becomes too big and
complex, it becomes difficult to find the relevant information; additionally, the
expert user does not want to rummage through a mass of documents to find
simple information. Documentation that is too voluminous can quickly become
shelf-ware.

– paper documentation—today’s developers require documents that are available
electronically to facilitate information retrieval;

– textual only documentation—we often say that a picture is worth a thousand
words. This quote reflects well the situation with process and procedure docu-
mentation. In addition, a large number of users prefer graphical representations
to textual ones. However, they will prefer a textual description when graphics
cannot convey the same detailed information;

– process documentation developed by an external consultant to the
organization—sometimes developers reject the process description made
by someone who does not understand their organization. In some cases,
a consultant cannot reflect the culture, the terminology, and the existing
processes of the organization;

– documentation that mixes different types of documentation (e.g., policy and
processes);

– complex notation—do not use a modeling notation that is too complex as users
risk spending a lot of time trying to understand the notation that describes the
process.

In a government agency, a contract was awarded to an external consultant to develop
processes, procedures and other documents. This organization had generous budgets for
the development of its processes. Since consultants were paid according to the amount of
documents produced, the resulting repository of assets contained several thousand pages.
After years of availability, it was found that several documents had never been updated
and others had never been used. The organization had therefore paid considerable sums
to develop unused and often unusable documents.

9.6 Graphical Representation of Processes and Procedures 357

9.6.2 Process Mapping

Process mapping has been done for many years. Flow charts were the initial graph-
ical representations and notation used for process documentation. These charts rep-
resented the following object types: decisions, input devices, output devices, and
data storage media. Descriptive information as well as decisions where represented
directly into the lozenges and the connection between objects was made using arrows.
The ability to simply and explicitly describe the flow and the decisions made this nota-
tion very popular. Examples of graphical objects used by this notation are illustrated
in Figure 9.4.

Although we still find diagrams using flow charts, is it less popular today. The
next section introduces the ETVX notation.

9.6.3 ETVX Process Notation

The ETVX notation was used in the 1980s by IBM [RAD 85]. Given its simplicity,
it has been adopted by many organizations such as NASA and the SEI. Figure 9.5
describes the concept by illustrating how the ETVX notation works.

Action

Decision

Document

Data

Trigger event

Logic conector

Figure 9.4 Control flow graphical notation objects.

358 Chapter 9 Policies, Processes, and Procedures

Entry eXit

Task

Validation/
Verification

Figure 9.5 ETVX notation concept [RAD 85].

This notation includes the following components:

– Inputs
◦ Assets (e.g., document) received from outside the process are required for its

execution. It is often the case that not all inputs are mandatory when execut-
ing the process the first time. When other inputs become available, additional
iterations may be performed.

– Tasks
◦ Actions to be carried out to achieve the goal of the process and create the

required outputs.

– Validation/Verification
◦ A mechanism to ensure that the process tasks were carried out as required

and that the deliverables meet the quality required.

– Outputs
◦ Assets produced following the execution of the process and that will be used

outside of this process.

Some organizations have added elements, such as those that follow, to the initial
ETVX notation to better document processes (see Figure 9.6):

– Title (Process title)

– Entry criteria
◦ Measurable conditions that must be satisfied before the process tasks can be

executed.

– Exit criteria, also called a completion criteria
◦ Measurable conditions that must be satisfied before you can exit this process.

– Measures taken during the execution of this process

9.6 Graphical Representation of Processes and Procedures 359

OutputsInputs

Entry criteria

Measures

Activities-tasks

Exit criteria

Figure 9.6 Illustration of the modified ETVX notation [LAP 97].

◦ The measurements are used to monitor the progress of activities, and can
be used by other projects to better estimate the effort required to execute
this process. Measures such as effort, for example, can be captured starting
at the time the entry criterion is satisfied and stopped when the exit crite-
rion is met. Measurement units should be specified (e.g., person-hour for
effort).

– Tools
◦ A list of tools/software required to execute the process.

– Risks
◦ A section that lists the risks encountered when this process was used in the

past.

– References
◦ A section that lists reference documents that can be used to explain and sup-

port the process, its inputs, and its execution.

It is also possible to specify additional exit criteria as follows:

– Each artifact generated by the process is consistent with the organizational
policies, standards and procedures;

– Each artifact produced by the process was verified, approved and stored in the
organizational process repository.

360 Chapter 9 Policies, Processes, and Procedures

Procedure: <Name of process/procedure> Phase: <Name of phase where the
procedure is used>

Process/procedure owner: <owner of this process/procedure>

Description: a brief description, background and purpose (value) of the process/procedure

Entry criteria:
• <entry criteria>

Exit criteria:
• <exit criteria>

Inputs:
• <work products as input>

Outputs:
• <work products as output>

Roles:
• <list of all the actors and their responsibilities>

Reference(s)
• <Document required to use this procedure>

Assets:
• <Tools; methodologies; references; guidelines; checklists; other procedures>

Tasks:
• <Itemized list of tasks (summarized) which need to be accomplished to satisfy this

process/procedure (using an active verb and a noun)>

Measures:
• <Measures captured during execution of process/procedure>

Figure 9.7 Template of a textual process description using the ETVX notation.

Entry criteria Major tasks
Process ETVX diagram

Exit criteria OutputsInputs

AND

AND

OR

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Output #1

Output #3

Output #4

Entry criteria #1 1. Task
2. Task
3. Task

1. Task
2. Task

Verification and validation

Entry criteria #2

Entry criteria #3

Entry criteria #4

Entry criteria #5

Exit criteria #1

Exit criteria #2

Exit criteria #3

Exit criteria #4

AND

AND

OR

AND

OR

OR

AND

ANDAND

OR

OR

Figure 9.8 Example of a NASA process graphically represented using the ETVX notation [NAS 04].

9.6 Graphical Representation of Processes and Procedures 361

ISD ETVX* Diagram

Number: 580-TM-011-01 Approved By: (signature)
Effective Date: August 1, 2004 Name: Joe Hennessy
Expiration Date: August 1, 2009 Title: Chief, ISD

Responsible Office: 580/Information Systems Division (ISD) Asset Type: Template
Title: ETVX Diagram PAL Number: 3.5.2.2

GUIDANCE: This template can be used to define an ETVX Diagram.
The above header must be changed for new ETVX diagram. Changes include:

Name (ISD ETVX* Diagram) should be “ISD [process title] ETVX* Diagram”
Also change Number, Dates, Asset Type, Title, and PAL Number

Process ETVX Diagram

Inputs Entry Criteria Major Tasks Exit Criteria Outputs

Input #1

AND

Input #2

AND

Input #3

OR

Entry Criteria #1

AND

Entry Criteria #2

AND

Entry Criteria #3

OR

1. Task
2. Task
3. Task

Exit Criteria #1

AND

Exit Criteria #2

OR

Exit Criteria #3

OR

Output #1

AND

Output #2

OR

Output #1

OR

Input #4 Entry Criteria #4

AND

Entry Criteria #5

1. Task
2. Task

Exit Criteria #4 Output #3

AND

Output #4

Verification and Validation

Formatting
Conventions

GUIDANCE: Description of the formatting for the above template.
Delete this section for final version.

ETVX Labels Arial or Helvetica 10-point bold font

Text formatting Arial or Helvetica 9-point font

AND/OR Booleans Arial or Helvetica 10-point bold font

Dashed Line Separates Usage Scenarios.

Figure 9.9 A NASA template used to explain the ETVX notation [NAS 04].

362 Chapter 9 Policies, Processes, and Procedures

Complexity of
ETVX Diagram

GUIDANCE: In situations where the Boolean expressions for Inputs and
Entry Criteria or for Outputs and Exit Criteria are too complex to be easily
and clearly labeled, make a separate ETVX Diagram for each Usage
Scenario.
Delete this section for final version.

Definitions GUIDANCE: Description of the parts of the ETVX diagram.
Delete this section for final version.

Usage Scenario A set of inputs and entry criteria that define unique
conditions for execution of a process.

Entry Criteria Conditions that must be satisfied in order to start the
process.

Exit Criteria Conditions that must be satisfied in order to exit the
process.

Inputs Items received from outside the process that are needed
for performance of the process.

Outputs Items produced as a product of the process for use
outside of this process.

Tasks Activities, which taken together, will perform the work
required by the process.

Validation Steps to determine whether the product(s) fulfills its
specific intended use.

Verification Steps to determine whether the product(s) of a task fulfills
the requirements or conditions imposed on them in the
previous tasks.

Figure 9.9 (Continued)

It is also possible to use textual notation to describe the ETVX notation. Figure
9.7 provides this template. This format, as well as the one presented in the above
figure, could be used by more mature developers.

Professor Laporte has used the ETVX notation for software process documen-
tation and project management (PM) at Rheinmetal Corporation and Bombardier
Transport [LAP 97]. He added title and activities to the notation. A rule was added to
ensure that both of these additions include an action verb and a noun (e.g., “estimate
the size of the product”). In addition, each activity needed to be assigned a unique
number to facilitate its reference in sequence. NASA also uses the ETVX notation
to document its processes and procedures. Figure 9.8 shows a NASA process that is
described using the ETVX notation.

NASA has also documented how to complete the ETVX table shown in
Figure 9.8. Figure 9.9 presents the result.

Figure 9.10 shows an ETVX representation of a configuration management pro-
cess. It is not mandatory to include both entry and exit criteria.

9.6 Graphical Representation of Processes and Procedures 363

GUIDANCE for Development History (Below): Description of major changes to the ETVX diagram
under development and the author performing the change. Delete this section for final version.

Development
History

Version Date Description of Development Changes

0.1 Feb 16,
2004

Created initial version of the User’s View Template
PGArnold

0.2 Mar 16,
2004

Added alternative formats for data tables. Dropped
appendix, which was not necessary. Added standards
for asset numbering & formatting in a new appendix.
Added changes agreed to at March 16 ISD team
meeting. PGArnold

0.3 Mar 24,
2004

Incorporated comments from reviewers at March 23
ISD team meeting. Dropped table format for most
sections. Added bulleted list format for most sections.
PGArnold

0.4 April 2,
2004

Incorporated comments from reviewers at March 30
ISD team meeting. Added in QMS Records and table
for Training. PGArnold

0.5 April 14,
2004

Incorporated comments from reviewers at April 2 ISD
team meeting. This included addition of mapping
tables to various entry scenarios, addition of more
tables for sections recommended, and rewording of
some sections to delete mandatory language.
PGArnold

0.6 April 19,
2004

Incorporated comments from reviewers.
PGArnold

0.7 April 21,
2004

Major rewrite to add comments from reviews,
including dropping some tables, reformatting of many
sections, & addition of comments for section headers.
PGArnold

0.8 June 21,
2004

Changes to address CCB and Sally Godfrey’s
comments. PGArnold

0.9 June 23,
2004

Final changes to address ISD process team review
PGArnold

0.91 July 2,
2004

Minor changes to improve formatting and problems
associated with grayed backgrounds. PGArnold

0.92 July 30,
2004

Minor changes. PGArnold

GUIDANCE for Change History (Below): Description of improvements to the approved ETVX
diagram, the Change Request responsible, and the author performing the change.

Change History Version Date Description of Improvements

1.0 TBD Initial approved version by CCB

Figure 9.9 (Continued)

364 Chapter 9 Policies, Processes, and Procedures

OutputsInputs

Entry criteria
Measures

Exit criteria

SCM Plan

Changes to CI

CI

CI Status

Action items

SCM Procedures

SCM Records

Baselines

Archives

Result of audits

Change requests

Changes to baselines

SCM Plan

Work products

Updates of baselines

1. Identify configuration
items

2. Establish a
configuration
management system

3. Create or release
baselines

4. Track change requests
and control changes

5. Establish records
6. Perform configuration

audits

Approved SCM Plan Effort (staff-hour)

Figure 9.10 A configuration management process graphically represented using the ETVX notation
ETVX [LAP 97].

Bombardier Transport Software Development Process [LAP 12]

The Bombardier software engineering process (BSEP) describes a disciplined approach
to the assignment of activities and responsibilities in a software development team. Its
purpose is to ensure the production of high quality software that meets the user require-
ments within the allocated budget and time.

The BSEP was developed using in-house knowledge (e.g., development process,
history of approved practices) based on the Software Engineering Institute CMM model,
international standards such as ISO 12207 and ISO 9001, the Guide to the Project Man-
agement Body of Knowledge (PMBOK® Guide) and IBM’s RUP framework.

An overview of the BSEP process is shown in Figure 9.11. Two dimensions are
represented: first, the dynamic aspect of the process is expressed in terms of phases, iter-
ations, milestones and baselines; second, the static aspect of the process is expressed in
terms of ISO 12207 processes and activities.

Three key process elements are represented by the roles, activities and artefacts:

– Roles: A role defines the behavior and responsibilities of a person or group of people
working as a team, in this context, in a software engineering organization. The role
and associated responsibilities define how the work will be performed as well as their
author. A project member can play different roles during the project.

P
ha

se
s

It
er

at
io

ns

P
ro

po
sa

l
P

la
nn

in
g

E
la

bo
ra

ti
on

C
on

st
ru

ct
io

n
M

ai
nt

en
an

ce

B
id #1

B
id #2

P
la

nn
in

g
P

D
R

C
D

R
R

el #1
R

el #2
R

el #3
R

el #4
M

ai
nt

R
el

 #
1

M
ai

nt
R

el
 #

2

1.
1

Su
pp

ly

P
ro

ce
ss

 u
ti

liz
at

io
n

2.
1

C
on

fig
ur

at
io

n
m

an
ag

em
en

t

2.
2

Q
ua

lit
y

as
su

ra
nc

e*

2.
3

V
er

ifi
ca

ti
on

 &
 v

al
id

at
io

n

2.
4

Jo
in

t
re

vi
ew

2.
5

P
ro

bl
em

 r
es

ol
ut

io
n

3.
1

M
an

ag
em

en
t

3.
2

In
fr

as
tr

uc
tu

re

3.
3

Im
pr

ov
em

en
t

3.
4

T
ra

in
in

g

1 Primary life cycle 2 Supporting 3 Organizational

P
ro

ce
ss

es

S
ys

te
m

 r
eq

ui
re

m
en

ts
 a

na
ly

si
s

S
ys

te
m

 a
rc

hi
te

ct
ur

al
 d

es
ig

n
S

of
tw

ar
e

re
qu

ire
m

en
ts

 a
na

ly
si

s
S

of
tw

ar
e

ar
ch

ite
ct

ur
al

 d
es

ig
n

S
of

tw
ar

e
de

ta
ile

d
de

si
gn

S
of

tw
ar

e
co

di
ng

 a
nd

 te
st

in
g

S
of

tw
ar

e
in

te
gr

at
io

n
S

of
tw

ar
e

va
lid

at
io

n
te

st
in

g
S

ys
te

m
 in

te
gr

at
io

n
S

ys
te

m
 q

ua
lif

ic
at

io
n

te
st

in
g

S
of

tw
ar

e
in

st
al

la
tio

n

F
or

m
al

 b
as

el
in

es

P
ro

je
ct

 m
ile

st
on

es
B

id
de

ci
si

on
N

T
P

P
D

R
C

D
R

C
om

m
is

si
on

in
g

F
A

I
Q

ua
lif

C
us

to
m

er
fin

al
ac

ce
pt

an
ce

*
 U

n
d

er
 Q

A
 r

es
p

o
n

si
b

il
it

ie
s

(A
Q

-2
0

3
)

R
eq

P
ro

du
ct

D
ev

D
ev

D
ev

B
id

P
ac

ka
ge

1.2 development

B
id

re
le

as
e

T
ai

lo
ri

ng
 p

ro
ce

s
A

s-
n

ee
d

ed
R

eq
u

ir
ed

B
SE

P
 (

B
om

ba
rd

ie
r

so
ft

w
ar

e
en

gi
ne

er
in

g
pr

oc
es

s)
 -

 li
fe

 c
yc

le

F
ig

ur
e

9.
11

B
om

ba
rd

ie
r

T
ra

ns
po

rt
so

ft
w

ar
e

lif
e

cy
cl

e
hi

gh
le

ve
lr

ep
re

se
nt

at
io

n
[L

A
P

12
].

366 Chapter 9 Policies, Processes, and Procedures

– Activities: Roles have activities that define the work they are to perform. Activities are
processes or functions to perform, both intellectually and physically, in order to achieve
a given objective. An activity is a unit of work that a person, having the responsibility
described by the role, may be asked to perform. An activity also refers to any work done
by managers and technical staff to complete the project activities. An activity is used
as a planning and progress monitoring element.

– Artefacts: Activities have artefacts as input or output. An artefact is a result of the pro-
cess execution (e.g., a work product). Individuals that play a role use artefacts to carry
out activities, and to produce some during the execution of activities. Artefacts can be
internal or external to the project and take various forms:
◦ a model, such as a use case model or a design model;
◦ a document, such as a project plan, a requirements document or SRS (Software

Requirements Specifications) document.
◦ code.

9.6.4 IDEF Notation

During the 1970s, an integrated computer aided manufacturing program (ICAM)
for the US aviation industry sought to increase productivity by the increased use of
information technology. The ICAM program developed a series of graphical mod-
eling notations known as ICAM Definitions (IDEF). The IDEF0 notation is derived
from an existing graphical modeling notation known as the structured analysis and
design technique (SADT). IDEF0 was developed by the original authors of SADT
[IEE 98].

Figure 9.12 describes the IDEF0 notation. Arrows entering the left side of the box
are inputs. Inputs are transformed by the function performed in the rectangle (which
represents an activity to be performed) to produce outputs. The arrows entering the
top of the box are controls. Controls specify the conditions required for the func-
tion to produce correct results. The arrows, located in the lower part of the rectangle
and pointing up, are mechanisms that identify means that support the delivery of the
function (e.g., tools). The arrows pointing down enable information sharing between

Control

Function name

Mechanism Call

Output

Figure 9.12 Notation IDEF0 [IEE 98].

9.6 Graphical Representation of Processes and Procedures 367

models or between parts of the same model. Rectangles can be interconnected to form
a process.

In the following example, we illustrate the description of a process at three levels:
at the process level, at the step level and at the ETVX level.

Engineering and the Integration of the Software Engineering Process, Systems
Engineering, and Project Management [LAP 97]

The project tracking and planning process is described here to illustrate the activities
to be done. At the highest level of detail, we can see three processes (see Figure 9.13):
a planning process during the proposal phase, a project planning process following the
award of a contract and the tracking process for the project.

Software project
planning

process for proposal
(including negotiation

phase)

Software project
planning

process (after contract
award)

Software project
tracking process

Figure 9.13 Three processes of the project planning phase.

The following figure shows the seven steps of the second phase of software project
planning (SPP).

The following figure shows an ETVX representation of step SPP-120—Prepare esti-
mates and project schedule.

The proposal phase considers the original vision of a potential product and trans-
forms it into a business case, where if it is to be subcontracted development, the require-
ments of the project are analyzed: first, its size, cost and timeline is estimated, then a risk
analysis is performed. In both cases, the main result of this phase amounts to determin-
ing whether the project is acceptable or not. Given that during the contract negotiation
phase, it is possible that certain requirements (e.g., execution schedule, software require-
ments) have been modified, it is necessary that the planning phase, after contract award,
reviews the plans submitted during the bidding phase. During the third phase, we collect
and analyze project data to further adjust the initial plans.

The second level of planning and monitoring activity details occurs during the pro-
posal phase and is shown in Figure 9.14. As shown, each step is numbered (e.g., SPP-120).
In addition, each step name uses a verb and a noun. The steps can be connected together
as required by the project. It is the responsibility of the project team to create a relevant
process. Although the steps are represented as a sequence, feedback loops to earlier stages
is permitted. Feedback loops are not shown so as not to clutter the example.

368 Chapter 9 Policies, Processes, and Procedures

To SPP 200

Review proposal,
risk analysis,
estimates and

schedule

SPP-100

Plan the proposal
activities

SPP-110

Generate project
WBS/OBS

SPP-120

Prepare project
estimates and

schedule

SPP-130

Perform risk
assessment/
abatement

SPP-140

Prepare proposal

SPP-150
SPP-160

Conduct
proposal

lessons learned
review

Figure 9.14 Planning phase.

Figure 9.15 shows the third level of detail. This figure shows an ETVX representation
of step SPP-120. As the ETVX may not provide all the necessary information to execute
a particular step, it can be supplemented by a text in the developer’s manual (e.g., an
estimation procedure).

Development of a Systems Engineering Process

The Generic Systems Engineering Process (GSEP) document describes, using the IDEF
notation, the management, technical operations, and the documents produced by each
activity. The main management activities (see Figure 9.16) are: understanding the

Project WBS/OBS

Approval of estimate and schedule
by management

OutputsInputs

Statement of work

Contract

Historical data

Estimation procedure

Assumptions

Ressource availability

Assumptions for estimates

Updated historical data

Estimates

Schedule

List of alternatives

Entry criteria

Measures
Effort (staff-hour)

Exit criteria

Contract approved

Prepare estimate and schedule

1. Update the assumptions

2. Identify potential reusable
 components

3. Prepare a first estimate using
 the procedure

4. Review the estimate with
 stakeholders (e.g. engineers)

5. Review the estimate with
 management

6. Update estimation historical
 database

Figure 9.15 ETVX representation of step 120.

9.6 Graphical Representation of Processes and Procedures 369

context, risk analysis, planning a development increment, tracking an increment, and
developing the system. The main technical activities are: analyze needs, define require-
ments, define the functional architecture, synthesize allocated architecture, evaluate alter-
natives, validate and verify the solution, and manage the repository. Like the software
process, each major activity is broken down into a number of smaller activities that are
described individually using the ETVX notation.

Integration of the Software Engineering Process and Systems Engineering
Process

We used a document entitled “Integrated Systems and Software Engineering Process
(ISSEP)” as an integration structure. The ISSEP describes activities at three different
levels: the system level, the configuration item level (CI) and the component level. The
activities at the system level are: managing system development, design and verify the
system, integrate and test the system. At the CI level, activities are: manage the devel-
opment of the CI, design and verify the CI, develop components, and integrate and test
the CI.

Configuration items can be decomposed into one or more components. Component
level activities are: build components, develop test cases units, and perform unit test-
ing and analysis. It is at the component level that software is coded and that the prod-
uct is manufactured. Figure 9.16 shows the links between system engineering processes,
software engineering processes, subsystems engineering processes, and the link with the
manufacturing process.

Implement
(produce)

system

Develop SW
configuration

item Develop HW
configuration

item

Manage
development

effort

Define
system

increment

System context
Technical risk
Technical baseline
System status

Configuration item
CI Baseline/plan/status

System development plan/status

System
definition

Increment
plan

System

Estimate
of the

situation

System
definition

Project management
process

Figure 9.16 Integration of software engineering to the system engineering process [LAP 97].

370 Chapter 9 Policies, Processes, and Procedures

9.6.5 BPMN Notation

The Business Process Modeling Notation (BPMN) is a standard of the Object Man-
agement Group (OMG) [OMG 11]. This notation was originally developed by the
Business Process Management Initiative, and in 2009, the second version of BPMN
was published. BPMN defines a set of graphical objects used in the description of the
process. This notation is based on four families of items:

– flow objects

– connection objects

– activity corridors

– artifacts

Each family contains objects in object categories. The following sections intro-
duce you to the concepts of objects used in the BPMN notation.

9.6.5.1 Event Objects

Generally, a BPMN graph contains the following three types of objects: (a) events;
(b) activities; and (c) connectors.

9.6.5.1.1 Events An event graphically represents all events that can take place,
and that are likely to trigger one or more activities. The BPMN notation authors have
designed this object in order to provide an accurate description of the process. Experts
will notice that each new version of BPMN enriches the event library of the notation.
Generally, there are three types of popular events as illustrated in Table 9.4.

There are many more events available. Figure 9.17 illustrates the types of events
used by this classification.

9.6.5.1.2 Activities As its name implies, an activity means work concerning
an organization’s business transactions. BPMN distinguishes between two types of
activities:

– Task: an indivisible action.

– Sub-process: an action that includes or regroups a number of tasks.

Table 9.5 shows the symbols used to illustrate these two types of activities.

Table 9.4 BPMN Event Types

Event type Symbol Description

Start Event that starts a process

Intermediate Event that occurs during a process

End Event that ends a process

9.6 Graphical Representation of Processes and Procedures 371

Message

“Catching” “Throwing” Non-interrupting

Timer

Error

Escalation

Cancel

Compensation

Conditional

Link

Signal

Terminate

Multiple

Parallel
Multiple

Figure 9.17 BPMN list of event types [DEC 08].

9.6.5.1.3 Connectors The last of the three objects is the connector. Also
known as the gateway, this type of object illustrates the convergence of deci-
sion points as well as the divergence of a process activity. Connectors are repre-
sented by an empty diamond in the case of a conventional decision. Otherwise, an
additional notation is used to indicate more complex cases, such as the disconnected

Table 9.5 BPMN Activity Types

Activity Type Symbol

Task

Sub-process

372 Chapter 9 Policies, Processes, and Procedures

Table 9.6 BPMN Connexion Objects

Connexion objects Symbol

Sequence flow
Association
Message flow

node/union node as well as the fusion node. The next section describes the connection
objects.

9.6.5.2 Connection Objects

These objects serve as connectors between objects presented in the previous section.
Table 9.6 shows the difference between the three types of connection objects used by
the BPMN notation.

The concepts for structuring business process activities are discussed next.

9.6.5.3 Swim Lanes

BPMN notation uses the concept of the swim lanes of activities to organize and struc-
ture the processes. Table 9.7 provides an explanation of the two types of swim lanes
proposed by the notation.

The following section introduces the way in which the BPMN notation allows
for additional information to be included in the process model.

Table 9.7 The Types of BPMN Swim Lanes

Type of lane Description Graphical representation

Swim lane A lane is used to represent the
activities of a specific role

N
am

e

Pool A pool is usually used to
represent a process in an
organization. A lane, on the
other hand, represents an
activity of a department within
that organization. By using
pool and lane, you can identify
how a process is done and
which department performs
that activity.

N
am

e

9.6 Graphical Representation of Processes and Procedures 373

Table 9.8 BPMN Artifacts

Artifact Description Symbol

Annotation Object used for
comments

Text Annotation Allows
a Modeler to provide
additional Information

Group Object used to regroup
tasks

Data object Object used to represent
data needed (and
produced) during the
execution of a task

Name
[State]

9.6.5.4 BPMN Artifact

Artifacts are additional objects that provide more detail to ensure a more complete
understanding of a process. Table 9.8 shows the three types of BPMN artifacts, their
descriptions and associated symbols.

9.6.5.5 BPMN Modeling Levels

The modeling of typical business processes is achieved using several logical levels,
depending on the methodology used and the target clientele. BPMN allows for the
production of high-level conceptual diagrams as well as very detailed levels.

Using BPMN notation can be done in three levels [SIL 09]:

1) Descriptive level: The goal of this first modeling level is to describe the busi-
ness process at a general and conceptual level. It is meant to represent the
overall flow of the process (sometimes called a meta process).

2) Analytical level: Analysis of the descriptive level diagrams does not allow
for the evaluation of its quality or performance. This requires the produc-
tion of more detailed diagrams that describe all the possible branching and
interaction scenarios of a process. This is, indeed, the reason for the ana-
lytical level. This second level of modeling, mainly used by architects and
business analysts, aims to describe the details of a process in an accurate
manner.

3) Executable level: This level is dedicated specifically to software and system
developers. It is used to produce executable process models (i.e., that reflect
the business processes). When a process is represented at this level, it can be
executed by many popular BPM commercial solutions/tools.

374 Chapter 9 Policies, Processes, and Procedures

These three levels of modeling are aligned with the concept of model-driven
architecture (MDA). MDA software implementation (SI) of a process can be used
at the beginning of a project to produce a model independent of the implementation
(CIM), which can be transformed into a platform-independent model (PIM model),
that in turn can be transformed into a platform specific model (PSM model). Note
that this classification is not part of the specification of the BPMN notation. Figure
9.18 shows an example of BPMN representation.

In conclusion, we have seen that BPMN is a notation that can be used for repre-
senting business processes. This description can be done at different levels of detail,
based on a rich library of graphical objects.

Davies [DAV 06] conducted a study to determine the current most popular graph-
ical representation models in industry. He surveyed the market to see what tools and
notations are actually used by practitioners. He questioned 312 members of the Aus-
tralian Computer Society (ACS). The survey listed 24 different modeling tools that
were pre-selected by studying their popularity in the literature. Respondents were
practitioners in the field of IT with only 15% declaring themselves as end-users
or management. Davies research reveals that 61% of respondents use a version of
Microsoft Visio as a modeling tool with no specific notation in mind.

The Design of a Process Diagram using Swim Lanes

– identify the roles of participants in the process;

– name roles using a generic approach, for example, do not give the name of a person
playing that role but rather assign a name that can be used from one project to another
without having to modify it;

– draw one lane for each identified role. These lanes can be traced horizontally or verti-
cally. Horizontal lanes are more in line with the notion of steps that occur over time on
a horizontal axis;

– add, at the bottom of the diagram, a lane to describe the deliverables associated with
tasks and roles;

– identify the task and the role that initiates the process;

– identify other tasks and place them in the appropriate lane. It is possible that a task is
carried out jointly by two or more roles. If it is, draw a box around these tasks. This box
will overlap two or more lanes. If a task requires the participation of two non-adjacent
roles, it is then possible to draw a box and for each role add a dotted box to show that
these two roles are involved in this task;

– complete the diagram by adding a textual description of the following information:
◦ a pointer to detailed procedures;
◦ additional information for roles;
◦ a pointer to the templates, checklists and tools to use.

E
rr

or
S

el
ec

tio
ns

Li
st

 o
f c

on
fli

ct
s

S
en

d
co

nf
lic

ts

C
on

fli
ct

s?

R
eq

ui
re

 c
ou

rs
es

in
fo

C
at

al
og

 u
pd

at
ed

C
ou

rs
es

 in
fo

N
o

Ye
s

S
el

ec
t c

ou
rs

e
op

tio
n

O
pt

io
n

re
ce

iv
ed

R
eg

is
tr

at
io

n
cl

os
ed

?
??

??
??

?
in

fo
rm

at
io

n

C
ou

rs
e

of
fe

rin
gs

C
ou

rs
e

of
fe

rin
gs

E
rr

or

S
en

d
in

fo

A
na

ly
ze

re
qu

ire
m

en
t

Ye
s

S
en

d
er

ro
r

N
o

Professor Select courses

C-reg. system

Catalog

V
er

ify
co

nf
lic

ts

F
ig

ur
e

9.
18

E
xa

m
pl

e
of

a
pr

ov
is

io
ni

ng
pr

oc
es

s
re

pr
es

en
te

d
us

in
g

B
PM

N
no

ta
tio

n.

376 Chapter 9 Policies, Processes, and Procedures

9.7 PROCESS NOTATION OF ISO/IEC 29110

As mentioned in Chapter 4, ISO/IEC 29110 describes processes, objectives, activ-
ities and tasks for Very Small Entities (VSEs) developing software or systems. A
VSE is an entity (enterprise, organization, department or project) having up to 25
people. ISO/IEC 29110 is not intended to preclude the use of different life cycles
such as: waterfall, iterative, incremental, evolutionary, or agile. The notation used in
the diagrams of ISO/IEC 29110 does not imply the use of any specific process life
cycle.

The following elements are used to describe the processes, activities, tasks, roles,
and products of ISO/IEC 29110 (adapted from [ISO 11e]):

– Name of a process
◦ A process identifier, followed by its abbreviation in brackets “()”. For exam-

ple, for the PM process, the notation is: PM process.

– Purpose of a process
◦ General goals and results expected of the effective implementation of the

process. The implementation of the process should provide tangible benefits
to the stakeholders.

◦ The purpose is identified by the abbreviation of the process name. For exam-
ple, for the PM process:
� PM purpose: The purpose of the PM process is to establish and carry out

in a systematic way the tasks of the SI project, which complies with the
project’s objectives in regards to quality, time, and costs.

– Objectives
◦ SG to ensure the accomplishment of the purpose of the process. The

objectives are identified by the abbreviation of the name of the pro-
cess, followed by the letter “O” and a consecutive number. For example,
PM.O1.

◦ Each objective is followed by the square box which includes a list of the
chosen processes for the Basic profile from ISO/IEC/IEEE 12207 and its out-
comes related to the objective. For example, for Project Objective 7 (PM.O7),
the management and engineering guide describes the objective and a note is
added followed by a square box:
� PM.O7: SQA is performed to provide assurance that work prod-

ucts and processes comply with the Project Plan and Requirements
Specification.

� Note: The implementation of the SQA process is through the performance
of the verifications, validations, and review tasks completed in the PM and
SI processes.

9.7 Process Notation of ISO/IEC 29110 377

7.2.3 Software Quality Assurance Process

– a strategy for conducting quality assurance is developed;

– evidence of software quality assurance is produced and maintained;

– problems and/or non-conformance with requirements are identified and recorded;
and

– adherence of products, processes, and activities to the applicable standards, procedures,
and requirements are verified.

ISO/IEC 12207:2008, 7.2.3

Figure 9.19 illustrates the graphical representation of the PM process of ISO/IEC
29110 as follows [ISO 11e]:

– the large round-edged rectangles indicate process or activities.

– the smaller square-edged rectangles indicate the products.

– the directional or bidirectional thick arrows indicate the major flow of infor-
mation between processes or activities.

– the thin directional or bidirectional arrows indicate the input or output
products.

Input work products

– Input work products are products required to perform the process and its cor-
responding source, which can be another process or an external entity to the
project, such as the customer.

– Input work products are identified by the abbreviation of the process name and
showed as a two column table of product names and sources. As an example,
for the PM process, we have the following table:

Name Source

Statement of work Customer
Software configuration Software Implementation
Change request Customer Software Implementation

378 Chapter 9 Policies, Processes, and Procedures

Statement of work

Verification results

Meeting record

Project
planning

Project plan
execution

Project
assessment
and control

Project closure

Meeting record

Correction register

Change request

Acceptance record

Project plan

Progress status
record

Project repository
backup

Project repository

Software
configuration

Figure 9.19 PM process diagram of ISO/IEC 29110 [ISO 11e].
Source: Standards Council of Canada.

9.7 Process Notation of ISO/IEC 29110 379

The statement of work is defined as follows:

Name Description Source

Statement of
work

Description of work to be done related to
Software development. It may include:
– Product description

◦ Purpose
◦ General customer requirements

– Scope description of what is included
and what is not

– Objectives of the project

– Deliverables list of products to be
delivered to Customer

The applicable status is: reviewed.

Customer

Output work products

– Work products generated by the process and its corresponding destination,
which can be another process or an external entity to the project, such as the
customer or organizational management.

– Output work products are identified by the abbreviation of the process name
and showed as a two column table of product names and destinations. As an
example, for the PM process we have the following table:

Name Destination

Project plan Software Implementation
Acceptance record Organizational Management
Project repository Software Implementation
Meeting record Customer
Software configuration Customer

Internal work products

– Work products generated and consumed by the process and not reviewed or
approved by the customer.

– Input work products are identified by the abbreviation of the process name and
showed as a one column table of the work product names.

– All work product names are printed in cursive and start with capital letters.
Some products have one or more statuses attached to the product name sur-
rounded by square brackets “[]” and are separated by a comma “,”.

380 Chapter 9 Policies, Processes, and Procedures

– The work product status may change during the process execution.

– The source of a work product can be another process or an external entity to
the project, such as the Customer. As an example, for the PM process we have
the following table:

Name

Change request
Correction register
Meeting record
Verification results
Progress status record
Project repository backup

Roles involved

– names and abbreviations of the functions to be performed by project team
members;

– several roles may be played by a single person and one role may be assumed
by several persons;

– roles are assigned to project participants based on the characteristics of the
project;

– roles are defined in a table as follows.

Role Abbreviation Competency

Analyst AN Knowledge and experience eliciting, specifying,
and analyzing the requirements.

Knowledge in designing user interfaces and
ergonomic criteria.

Knowledge of the revision techniques.
Knowledge of the editing techniques.
Experience with software development and

maintenance.

Activity

– An activity is a set of cohesive tasks.

– A task is a requirement, recommendation, or permissible action, intended to
contribute to the achievement of one or more objectives of a process.

– A process activity is the first level of process workflow decomposition, the
second of which is a task.

9.7 Process Notation of ISO/IEC 29110 381

– Activities are identified by the process name abbreviation followed by consec-
utive numbers and the activity name. As an example, the activities of the PM
process of the Basic profile are:
◦ PM.1 Project planning
◦ PM.2 Project plan execution
◦ PM.3 Project assessment and control
◦ PM.4 Project closure

Activity description

– Each activity description is identified by the activity name and the list of related
objectives surrounded by brackets “()”. For example, PM.1 project planning
(PM.O1, PM.O5, PM.O6, PM.O7) means that the activity PM.1 project plan-
ning contributes to the achievement of the listed objectives: PM.O1, PM.O5,
PM.O6, and PM.O7.

– The activity description begins with the task summary and is followed by the
task descriptions table. As an example, the project planning activity of the PM
process is illustrated as follows:

PM.1 Project Planning (PM.O1, PM.O5, PM.O6, PM.O7)

The project planning activity documents the planning details needed to manage the
project. The activity provides:

– reviewed statement of work and the tasks needed to provide the contract deliverables
to satisfy customer requirements;

– project life cycle, including task dependencies and duration;

– project quality assurance strategy through verification and validation of work; prod-
ucts/deliverables, customer, and team reviews;

– team and customer roles and responsibilities;

– project resources and training needs;

– estimates of effort, cost and schedule;

– identified project risks;

– project version control and baseline strategy;

– project repository to store, handle, and deliver controlled product and document ver-
sions and baselines.

Task description

– Tasks are described in tables of four columns:
◦ Role—the abbreviation of roles involved in the task execution, for example,

Project Manager (PM), Team Leader (TL), and Customer (CUS),

382 Chapter 9 Policies, Processes, and Procedures

Table 9.9 Two Tasks of the Planning Activity [ISO 11e]

Role Task list
Input work
products

Output work
products

PM
TL

PM.1.1 Review the Statement
of Work

Statement of Work Statement of Work
[reviewed]

PM
CUS

PM.1.2 Define the Delivery
Instructions of each one of
the deliverables specified in
the Statement of Work with
the customer

Statement of Work
[reviewed]

Delivery
Instructions

◦ Task—description of the task to be performed. Each task is identified by
activity ID and consecutive number, for example, PM1.1,

◦ Input work products—work products needed to execute the task, for exam-
ple, statement of work,

◦ Output work products—work products created or modified by the execution
of the task.

– The task description does not impose any technique or method to complete it.

– The selection of the techniques or methods is left to the VSE or project team.

Table 9.9 describes the two tasks of the planning activity.
To further help VSEs that develop systems or software, a four-stage roadmap

has been published by ISO as illustrated in Figure 9.20. The entry profile is for VSEs
working on small projects (e.g., a project of up to six person-months) and for start-
ups; the basic profile is for VSEs developing only one project at a time with a single
team; the intermediate profile is for VSEs involved in the simultaneous development
of more than one project with more than one team; the advanced profile is for VSEs
wishing to significantly improve the management of their business and their compet-
itiveness.

Readers are invited to download ISO/IEC 29110 technical reports, such as
the management and engineering guides. ISO/IEC 29110 technical reports are

Entry

Basic

Intermediate

Advanced

Figure 9.20 Four-stage roadmap of ISO/IEC 29110.

9.8 Case Study 383

available at no cost from ISO. 1 Many of them have also been translated into Span-
ish, Portuguese, French, and Japanese. ISO/IEC 29110 has also been adopted by some
countries, such as Brazil, Japan, Mexico, Uruguay and Peru, as a national standard.

9.8 CASE STUDY

Process description and process improvement are more than just technical activities.
The management of change (i.e., organizational culture change) is, most of the time,
the real challenge of a major process improvement initiative. An improvement process
conducted over several years in a company in the defense sector has identified the
following lessons learned [LAP 98]:

Lesson 1: Set realistic expectations for senior management

Appropriate expectations must be defined before starting a process improvement
program. A risk, especially for a low process maturity level organization, is to com-
municate to senior management the idea that the process improvement initiative will
be simple, quick, and inexpensive. This should be avoided, as it creates an unrealis-
tic expectation. Here is a typical scenario: senior management learns the advantages
that a higher process maturity level might offer for the competitiveness of the orga-
nization. A project manager, or an external consultant, promotes that these goals are
easily achievable. Upper management mandates a team to achieve certification in a
very short time frame. Subsequently, senior management discovers with surprise that
process improvement goals will require much more time, more resources and signif-
icant changes to existing practices than they expected.

Lesson 2: Secure management commitment

For a low process maturity level organization, most of the findings associated
with a process assessment will target PM shortcomings (look back at the CMMI pro-
cess areas for level 2 displayed in Figure 4.9). It is therefore necessary to promote an
attitude where management is willing to invest in the PM process rather than blame
its personnel for current shortcomings. This is one other reason why it is necessary
to frequently inform management so that they can be understanding and offer their
commitment when such findings are made public in the organization.

“To reach a process maturity level 2, of CMMI, basically means getting rid of produc-
tivity inhibitors caused by a weak management processes, thus enabling skilled software
engineers to be fully exploited.”

Watts S. Humphrey

1 http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

let &hbox {char '046}http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

384 Chapter 9 Policies, Processes, and Procedures

Lesson 3: Establish an improvement working group before a formal evaluation

It would be better if a small process improvement group be active a few weeks
before a formal process assessment is begun by an external consultant. A process
improvement group can take their time to familiarize themselves with the methods
and tools associated with process improvement. Ideally, there should be a full-time
person in this group, while other members could be involved on a part time basis. In
addition to good technical skills, the members of this group must be selected accord-
ing to their recognized expertise and their known enthusiasm for the improvement of
project processes.

Lesson 4: Start improvement activities shortly after the first assessment

Regarding the development of an action plan, the organization should capitalize
on the momentum created by the process assessment. The organization does not have
to expect that a fully completed plan of action be finalized before starting process
improvement activities. Some improvement activities can begin immediately after the
first assessment. Executing small improvements is an important motivational factor
for all technical personnel and management.

Lesson 5: Collect data to document improvements

Before and during the process assessment, it is recommended that quantitative
and qualitative data be collected. These data will be used later to measure progress.
One can obtain data such as budgets, schedules, quality, and the level of customer
satisfaction. Given that management is investing in improvement, it will be important
to be able to demonstrate that some gains are made.

Lesson 6: Train all concerned personnel in regards to the process, methods and
tools

Once the processes are defined, it is essential to train personnel. Otherwise, it
is likely that the process will end up unused (i.e., on the shelves). It is misleading to
think that developers will learn new processes on their own in addition to their current
project workload. Training sessions also send a strong message that the organization
is moving forward and that its developers should use these processes. During training
sessions, it is necessary to communicate to personnel that with their first use of a new
process, mistakes and questions are likely to emerge. This message may help reduce
the stress level of first time users. A contact person should be assigned to help (e.g.,
a hotline) and coach personnel when faced with obstacles in the execution of new
processes.

Lesson 7: Managing the human dimension

We often underestimate the importance of the human dimension during a pro-
cess improvement initiative. Those responsible for technological change are often
extremely talented technically, but they are rarely well equipped in terms of change

9.8 Case Study 385

management approaches and techniques. The reason is simple: most of their training
was focused on technology and not on the soft skills. However, the major difficulty
of an improvement program is often managing the human dimension.

“BOEING noted early that technology transfer is almost as difficult as technology devel-
opment.”

ADA Strategy, June 1994
“The first lesson to use, from socio-technological research, is that social and technical
changes must be managed jointly.

If we want that process innovation succeeds, then the human side of change can-
not be left to itself. The organization and its human resources are more important than
technology issues in order to obtain a behavioral change that is reflected in the process.”

[DAV 93]

During the preparation of the technical part of an improvement action plan,
change management elements must be planned as well. This implies, among other
things, knowledge of: (1) the history of the organization with respect to similar efforts,
successful or not; (2) the culture of the organization; (3) motivational factors, positive
and negative, available to facilitate change; (4) the degree of perceived urgency com-
municated by management to conduct changes (look back at the case study presented
in section 6.10).

Lesson 8: Process improvement requires additional people skills

As mentioned above, an organization that really wants to make substantial pro-
ductivity and quality gains must manage cultural change. A culture change requires
a special skill set. The profile of the process improvement coordinator and facilitator
is a person with skills in sociology and psychology. This often requires both manage-
ment and personnel to change/adapt their behavior.

With the formalization of its processes, management must change its authorita-
tive management style to a more participatory style. For example, if the organization
really wants to improve its processes, a major source of improvement ideas must
come from those who work, on a daily basis, with these processes. This implies that
management should encourage and listen to new ideas. This also implies that the
decision process may have to change from an autocratic style of “Do as you are told”
to a participatory style of “Let’s talk about this idea.” Similarly, the behavior of some
employees who currently behave like “heroes” that can solve any problem should
change to act as team members who can generate ideas, listen to the ideas of others
and follow the process.

386 Chapter 9 Policies, Processes, and Procedures

Professor Laporte was consulting at an organization in the public sector. During an infor-
mal discussion with a project manager, he stated that “in this organization you cannot
make a mistake.” A few weeks later, a member of the executive team, surrounded by six
of his directors, approved a very important process improvement project at a meeting and
assigned the same project manager. The meeting was to continue after lunch.

When the meeting reconvened, the project manager was no longer present. His sec-
retary informs the meeting participants that he will be on sick leave for several months
due to burn-out.

Process improvement is not an exact science, but rather an experimental approach
that has its share of difficulties and mistakes. The project manager for process improve-
ment, aware of the vice-president’s low tolerance level for error, decided to leave the
project to preserve his health.

In addition, in the first months after the introduction of a new process, a new
practice or a new tool, management and employees must recognize that mistakes and
questions will be inevitable. Unless a clear signal is sent by management that this
is acceptable and a safety net is set-up to recognize this situation, employees will
“cover up” their mistakes. The result is that not only does the organization not learn
from these mistakes, but other employees will make the same mistakes again. For
example, the main purpose of an inspection process is to detect and correct errors
and defects as soon as possible in the life cycle of the project. Management must
accept that to increase the error detection rate, the results of individual inspections
have to remain known only to the author and the inspection process coordinator; only
the average obtained from numerous inspections will be made public. When this rule
is accepted by management, employees feel safe to identify errors and report them.
Another advantage is that those who participate in an inspection will learn to avoid
these mistakes in their own work.

Facilitating behavior change requires skills that are not taught in technical
courses. It is highly recommended that those responsible for facilitating change
receive appropriate training.

Professor Laporte recommends two books that can facilitate change management: the
first book entitled “Flawless Consulting: A Guide to Getting Your Expertise Used”
[BLO 11], advises anyone acting as an internal consultant; the second book, entitled
“Managing Transitions – Making the Most of Change” [BRI 16], provides the steps
required to develop and implement a change management plan.

9.8 Case Study 387

Lesson 9: Choose pilot projects carefully

It is very important to carefully select pilot projects and pilot participants, as these
projects, if completed successfully, will promote the adoption of new practices across
the organization. Users of a new process will make mistakes, so it is imperative to train
participants and provide them with a safety net. If participants see that their errors are
used to learn and make improvements to the process instead of to blame them, the
level of anxiety will be reduced and the participants will bring more suggestions.

Managing the human dimension is something that will not only facilitate the
adoption of changes, but also create an environment where changes can be introduced
at a faster rate.

When using a new process, a new practice, or a new tool, management and employees
must recognize that mistakes are inevitable. When deploying the new process for docu-
mentation, the first engineer to use this process was reprimanded by his manager because
he had made some mistakes.

Other engineers in the department, whose offices were nearby, heard the manager
reprimand the engineer. The engineer was almost in tears. During the meal that followed
this event, the other engineers in the department looked for excuses not to be the next one
to use this new process!

Lesson 10: Conduct regular process audits

Process audits should be conducted on a regular basis for two main reasons: first,
to ensure that practitioners use the process, and second, to discover errors, omissions
or misunderstandings during their execution.

Lesson 11: Link process improvement activities with the organization’s business
objectives

It was observed that the improvement of software engineering processes really
gains momentum when management realizes that the real benefit of process improve-
ment is the improvement of the quality of products (e.g., it reduces time-to-market
and costs). Consequently, it improves the ability of the organization to better compete.

A multi-year process improvement plan is a very important tool to illustrate the
links between the objectives of the organization, the requirements of the organiza-
tion’s projects and process improvements. Essentially, this plan shows that process
engineering is not a static exercise, but a central infrastructure component for the

388 Chapter 9 Policies, Processes, and Procedures

success of the organization’s projects. Finally, a multi-year plan also shows practi-
tioners that a long-term management commitment to process improvement activities
is present.

Lesson 12: Adopt a common vocabulary

To succeed in any project, the use of common terminology is a fundamental
requirement. In developing the software processes, it was observed that different par-
ticipants had different meanings for the same word and the meaning of some words
was unknown to some people. For example, prototyping had a meaning in systems
engineering that was very different from that of software engineering. A terminol-
ogy glossary was developed by a member of the process improvement project. The
activity required collecting the vocabulary used by the participants and proposing
definitions in order to gradually build a common glossary for all processes.

You can use the ISO/IEC/IEEE 24765 as a dictionary for software development processes.
This will avoid lengthy and often unnecessary discussions between specialists. See the
glossary at the following site http://pascal.computer.org/sev_display/index.action

9.9 PERSONAL IMPROVEMENT PROCESS

Although the SEI maturity models, such as the CMMI models, provide organiza-
tions with a proven framework for system and software process improvement, they
describe “what” organizations should do and not “how” they should do it. But, soft-
ware engineers also want to know how to do a process.

Since software development is a very complex process, it cannot be reduced to
a cookbook of procedures. Watts S. Humphrey, the advocate of the maturity models,
completed research in the early 1990s to show how process improvement principles
can be applied to the daily work of software engineers. From this research, he con-
cluded that the process management principles of Deming and Juran are also appli-
cable to the individual processes used by software engineers, given that they apply to
other areas of technology.

He used the fundamental principles of processes to show how engineers can
define, measure and improve their own personal processes. Since each engineer is
different, he must adopt his own practices to produce efficient and effective soft-
ware. The Personal Software Process (PSP), developed by Humphrey, is a disci-
plined and structured approach to software development that enables all engineers to
significantly increase the quality of their software products while increasing their
productivity and respecting deadlines.

let &hbox {char '046}http://pascal.computer.org/sev_display/index.action
http://pascal.computer.org/sev_display/index.action

9.9 Personal Improvement Process 389

Personal Process

Set of steps or activities that guide individuals in doing their personal work. It is usually
based on personal experience and may be developed entirely from scratch or may be
based on another established process and modified according to personal experience. A
personal process provides individuals with a framework for improving their work and for
consistently doing high-quality work.

[SEI 09]

The PSP method is based on planning principles and the following quality prin-
ciples [HUM 00]:

– Every software engineer is different. To be more effective, they must estimate
and plan their work. They also have to develop this information using their
personal data.

– To constantly improve their performance, engineers must use defined and mea-
sured processes.

– To produce quality products, engineers must feel personally responsible for the
quality of their products. Premium quality products are not just produced with
luck, engineers must strive to do quality work.

– It is less expensive to find and fix defects earlier than later in the process.

– It is more effective to prevent defects than to find and correct them.

– The right way to work is always the fastest and cheapest way to do work.

“According to the data of thousands of experienced engineers who have learned the PSP
method, it was generally found that developers involuntarily inject about 100 defects in
every 1000 lines of code they write.”

Humphrey (2008) [HUM 08]

To properly complete a software engineering job, Humphrey said that engineers
must plan their work before committing to or starting a job and they must use a defined
process to do so. To understand their personal performance, they have to measure the
time spent on each step of the work, count the defects they inject and correct and

390 Chapter 9 Policies, Processes, and Procedures

measure the size of the products they develop. To consistently produce quality prod-
ucts, engineers must plan, measure, and monitor the quality of the products and they
must focus on quality early, at the beginning of a task. Finally, they must analyze the
results of each task and use these results to improve their own processes [HUM 00].

“Since the PSP is a set of practices and methods that enable software developers to control
their professional lives, when competent professionals learn and follow technical and
scientific principles and when they are empowered to manage their own work, they do
incredibly good work.”

Watts S. Humphrey

The PSP method consists of the following five elements (scripts, forms, mea-
surements, standards, and checklists) (adapted from [SEI 09]):

Scripts
Scripts are descriptions that guide the fulfillment of a personal process. They contain
references to relevant forms, standards, checklists, sub-scripts, and actions. Scripts
can be developed at a high level for a process or at a more detailed level for a particular
phase of a process (e.g., a procedure). A script documents:

– the purpose or objective of a process;

– one or more entry criteria;

– general guidelines, considerations of use or constraints;

– phases or steps to be performed;

– the measures and process quality criteria;

– one or more exit criteria.

Forms
Forms provide an appropriate and coherent framework for the collection and retention
of data. Forms indicate the necessary data and where to store it. When appropriate,
forms define the necessary calculations and data definitions. Paper forms may be used
if automated tools for data collection and storing are not readily available.

Measures
Measures are used to quantify the process and product. They allow for a better under-
standing of how the process works by allowing users to:

– elaborate data project profiles that can be used for planning and process
improvement;

9.9 Personal Improvement Process 391

– analyze a process to determine how to improve it;

– determine the effectiveness of a change to a process;

– monitor the performance of their processes and take decisions for the next step;

– monitor the capacity to meet their commitments and take the necessary correc-
tive measures.

Standards
The PSP method recommends the use of a number of standards such as coding stan-
dards, the guidelines for counting lines of codes and a defect classification standard.

Checklists
In the PSP method, checklists are specialized forms (or standards) used to guide the
personal reviews of a software product. Each item in a checklist verifies that the prod-
uct is correct or verifies its compliance with standards or specifications. A checklist
includes a list of the most common defects that can be found by reviewing a spe-
cific software product. The product is fully reviewed using a single item, taken from
top to bottom, from the checklist. When a list item is reviewed and completed, this
item is marked as done. When all the items in the checklist have been checked and
the list has been signed by the person who performed the review, it can be used as a
quality record and proof that a review was done. Table 9.10 shows an example of a
checklist. A line at the top of the checklist is available to indicate the title of the doc-
ument/product verified. A column to the right of the checklist allows the auditor to
note when an item is checked. Finally, a line at the bottom of the checklist identifies
the person who carried out the review and indicates the date.

Figures 9.21, 9.22, and 9.23 present improvements to the process for effort esti-
mation, quality, and productivity. These improvements are achieved when practition-
ers complete the 10 training sessions of the PSP method. Participants must write 10
programs and collect data during that time. In these three figures, the performance

Table 9.10 Example of a Partial Review Used by the PSP Method
(adapted from [HUM 00])

Title of the document/product reviewed :
No. Name Description Verified

10 Documentation Comment, messages 5
20 Syntax Syntax problem 8
21 Typographic error Spelling, punctuation 6
23 Start-end Limits are not properly identified 12
52 I/O File, display, printer, communication 70
70 Data Structure, content 70
80 Function Logic
Date: Verified by:

392 Chapter 9 Policies, Processes, and Procedures

during the development of program 1 is displayed to the left and the performance
obtained from the tenth program is presented to the right. The resulting data are
the average result of over 298 students that participated in this training over time
[HUM 00].

Figure 9.21 shows improvements in the estimate of effort.
Figure 9.22 shows the quality improvements.
Figure 9.23 shows the productivity improvements.

0.7

0.6

0.5

0.4

0.3

0.2
0 1 2 3 4 5

Program number

Effort estimation accuracy trend

6 7 8 9 10 Figure 9.21 Effort estimation
improvement (adapted from [HUM 00]).

120

110

100

90

80

70

60

50

40

30

20

10

0 1 2 3 4 5

Program number

Defects per KLOC removed in compile and test

M
ea

n
nu

m
be

r
of

 d
ef

ec
ts

 p
er

 K
LO

C

6 7 8 9 10

Figure 9.22 Quality improvement (adapted from [HUM 00]).

9.10 Policies, Processes, and Procedures in the SQA Plan 393

20

0

30

28

26

24

22

987654321 10

Program Number

Lines of (New and Changed) Code
Produced Per Hour of Total Development Time

Figure 9.23 Productivity improvement (adapted from [HUM 00]).

After each exercise, the student takes the time to reflect on his performance to
identify areas for improvement. As shown in these figures, the PSP method greatly
improves the ability to estimate, improve quality, and improve productivity. After
completing the PSP training, the student was better equipped to document his own
estimates and more importantly, to defend them to his management team or to a future
client.

9.10 POLICIES, PROCESSES, AND PROCEDURES IN
THE SQA PLAN

The IEEE 730 standard begins with a statement that SQA procedures, practices, and
policies should be developed and should conform to this standard.

This requires management to ensure that an organizational policy is established
that defines and governs SQA roles and responsibilities in their organization. This is
because the purpose of the IEEE 730 standard is to define the scope of SQA as:

– assessing the software development process;

– evaluating the conformance to software processes;

– evaluating the effectiveness of the software processes.

394 Chapter 9 Policies, Processes, and Procedures

These processes include those that identify and establish the software require-
ments, develop the software product, and maintain the software product.

The newly created SQA function will then define, in collaboration with soft-
ware developers and managers, the processes as well as the SQA function’s role,
concepts, methods, procedures, and practices to be applied in the organization. One
of the first actions will be to define the organizational quality policy statement to
be included in the future organizational quality management system. This organi-
zational quality policy statement that defines the SQA process as an organization
level process independent of SQA processes established for specific projects, will
need to be supported by documented processes and procedures. In doing this, SQA
must lead the identification of the standards, models, and procedures established
by the project or organization. It is at that time that tasks are assigned to those
responsible for SQA activities and for implementing the organizational quality policy
statement.

Once these are defined and set up, adherence of products, processes, and activi-
ties to the applicable standards, procedures, and requirements are verified by project
teams as well as independently by SQA.

SQA must also ensure that life cycle processes, models, and procedures for use
by the organization have been defined, maintained, and improved. They must have
helped in developing appropriate policies and procedures for the management and
deployment of life cycle models and processes. These must have been made avail-
able, explained and provided to the personnel. Of particular interest to them is a need
to ensure that processes and procedures exist related to reporting policy, process, and
procedure non-conformances. Once this is available, SQA is responsible for moni-
toring the implementation of processes and procedures related to corrective and pre-
ventive action that can be used for the organizational repository and documentation.

The SQA function should regularly review the organizational quality policy and
identify gaps and inconsistencies between the policy and proposed SQA roles and
responsibilities.

Questions that project managers should ask themselves concerning policy, pro-
cesses, and procedures are:

– what organizational reference documents (such as standard operating pro-
cedures, coding standards, and document templates) are applicable to this
project?

– has adherence of products, processes, and activities to the applicable standards,
procedures, and requirements been verified?

9.11 SUCCESS FACTORS

The following text box lists some factors that affect the development, implementation,
and improvement of an organization’s processes.

9.12 Further Reading 395

Factors that Foster Software Quality

1) A visible and sustained management commitment.

2) Defined business objectives.

3) Processes and process improvement objectives that support business goals.

Factors that may Adversely Affect Software Quality

4) No reasonable goals and plans.

5) Not tying processes and their improvement objectives to business objectives.

6) Inadequate resources and unrealistic expectations.

7) Thinking that institutionalization is the same as standardization [HEF 01]:
– The CMM does not say that everyone has to do everything the same way, but we

should understand when and where we need to be different. Institutionalization
means that the essential practices are aligned with and reinforce the organization’s
infrastructure.

8) Ignoring middle managers.
– In a low maturity organization, middle managers have the most to lose in a major

cultural change. They are also the most effective group to resist change when they
are not convinced that change is good. Consequently, they must recognize how to
be effective in the new culture and we must give them the tools to help them make
and sustain change.

9) Level 1 organizations often perform their improvement efforts as a maturity level 1
project. They do not have the discipline to manage the effort to improve as a mature
project by defining the requirements, developing a good plan, and by tracking with
a plan, etc. [HEF 01].

10) Organizations can also try buying a level of maturity by buying processes from a
consulting firm. This approach runs the risk of alienating staff.

9.12 FURTHER READING

Potter N. and Sakry M. Making Process Improvement Work. Addison-Wesley Professional,
2002.

Garcia S. and Turner R. CMMI Survival Guide, Addison-Wesley Professional, 2007.
Laporte C. Y., Berrhouma N., Doucet M., and Palza-Vargas E. Measuring the cost of

software quality of a large software project at Bombardier Transportation, Software Quality
Professional Journal, ASQ, vol. 14, issue 3, June 2012, pp. 14–31.

396 Chapter 9 Policies, Processes, and Procedures

9.13 EXERCISES

9.1 Develop a checklist to determine whether a draft policy really is a policy. Provide five
criteria.

9.2 Develop a list of criteria to guide a project manager to adapt the organization’s process
to the requirements of his project.

9.3 Develop a “scoring” grid to determine whether a process is consistent with a model (e.g.,
the CMMI-DEV).

9.4 Develop a list of criteria to help you determine whether a standard or model is compatible
with the organization’s culture and its way of working.

9.5 You have chosen the ETVX notation to document processes and business procedures.
Your boss asks you to explain why. Give five reasons.

9.6 You have chosen the CMMI-DEV as a repository for documenting business processes.
Your boss asks you to explain why. Provide five reasons.

9.7 You have decided not to use the CMMI-DEV as a repository for documenting business
processes. Your boss asks you to explain why. Provide five reasons.

9.8 You have chosen the ISO 29110 standard for the development of software for your orga-
nization. Your boss asks you to explain why. Provide five reasons.

9.9 You decided not to use the ISO 29110 standard for the development of software for your
organization. Your boss asks you to explain why. Provide five reasons.

Chapter 10

Measurement

After completing this chapter, you will be able to:

– understand the importance of measurement;

– understand the measurement process according to the ISO 12207 standard;

– understand the Practical Software and Systems Measurement method;

– understand the ISO/IEC/IEEE 15939 measurement standard;

– understand the measurement perspective according to the CMMI® for Devel-
opment;

– understand the benefit of using surveys as a measurement tool;

– understand how to implement a measurement program;

– learn practical considerations for measurement;

– understand the ISO/IEC 29110 measurement perspective;

– learn the measurement requirements described in the IEEE 730 standard.

10.1 INTRODUCTION—THE IMPORTANCE
OF MEASUREMENT

Software measurement has been a research topic in software engineering for over
30 years [FEN 07]. Sadly, many measurement programs can hardly report the most
basic software measurement such as: schedule, costs, size, and efforts. This means
that little recent and factual information is available to project teams and their man-
agement [LAN 08].

We recall here the definition of software engineering. This definition puts empha-
sis on the importance of measuring software activities and products.

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

397

398 Chapter 10 Measurement

Software Engineering

The systematic application of scientific and technological knowledge, methods, and expe-
rience to the design, implementation, testing, and documentation of software.

ISO 24765 [ISO 17a]

Today’s organizations that develop software, either as standalone products or as
components of systems, must continue to improve their performance and their soft-
ware. Consequently, they must establish a performance target for their software devel-
opment and maintenance processes. This would allow for better decision making and
assessments of the rate of improvement compared with the needs of clients.

Victor Basili summarizes the many problems relative to measurement [BAS 10].
Organizations developing software experience many problems when trying to imple-
ment measurement programs. As an example, they often try to collect too much data
where a good amount of it is not useful. They often do not implement a process
to analyze data in a way that can help with strategic and tactical decision making.
This situation leads to many problems such as a reduction of the benefits that can
be achieved from a proper measurement program and disillusionment on the part of
customers, management, and software developers. The inevitable result is the failure
of the measurement initiative.

Watts S. Humphrey described the key roles related to software measurement, that
is, understand and characterize, evaluate, control, predict, and improve [HUM 89]:

– understand and characterize: measures allow us to learn about software pro-
cesses, products, and services. Measures also:
◦ establish baselines, standards, and business and technical objectives;
◦ document the software process models used;
◦ set improvement objectives for software processes, products, and services;
◦ better estimate effort and schedule costs for a specific project;

– evaluate: measures can be used to conduct cost/benefit analysis and determine
if the objectives have been met;

– control: measures can help with project control of resources, processes, prod-
ucts, and services by sounding alarms when control limits are surpassed, per-
formance criteria are not met and standards are not followed;

– predict: when software processes are stable and under control, measures can
be used to predict budgets, schedules, resources needed, risks, and even quality
issues;

– improve: measures allow us to identify the root causes of defects and other
inefficiencies where improvements can be proposed.

10.1 Introduction—the Importance of Measurement 399

What is the Average Cost of a Line of Source Code in a Military System?

“The average cost per line of source code, for a military system used for command and
control varies between one and three hours per line, where an hour is labour time that
is directly attributable and a line of code is defined as a logical line as described in the
Software Engineering Institute measurement guide. In addition, the effort associated with
this estimate includes requirements analysis, architectural design, development and inte-
gration of software and test tasks. The estimate does not include testing of the system or
beta testing, but includes support for the requirements analysis.”

Reifer (2002) [REI 02]

As an example, we illustrate the use of measurement to control the quality of a
software project during development. Figure 10.1 presents the defect density of soft-
ware components that have been inspected. The dotted line shows the level of quality
required for a software component. For example, component number 10 should be
inspected again after defects of the first inspection have been corrected.

Measurement, when available, allows the software project manager [SEI 10a]:
to better plan and objectively assess the project state as well as the tasks that have
been assigned to a supplier; to track the actual project performance against approved
plans and objectives; to quickly identify process and product problems in order to
act on them; and to collect baseline data useful for benchmarking future projects. We
will also see that measures can be used to better estimate project schedules, requests

1 17 18 19 201613 14 1510 11 1298765432

Module number

D
ef

ec
t d

en
si

ty

(d
ef

ec
ts

 p
er

 1
00

0
lin

es
 o

f c
od

e)

Investigate for
reengineering

Reinspect

Figure 10.1 Example of a measure used for decision making [WES 03].

400 Chapter 10 Measurement

for proposals, answers from suppliers during the selection process, supplier and com-
petitors’ offers and proposed project schedules.

A measurement program is also helpful with the improvement of the quality of
software acquisition, development, maintenance, and infrastructure processes. The
program must use a measurement repository where data are collected, analyzed, and
measurements are reported and available to all stakeholders within the organization.
This measurement repository should be designed to answer all types of questions, for
decision making and performance indicators. It should also allow for the coherent
measurement of the software processes improving quality and allowing for efficient
defect removal.

Measurement has been at the origin of all science and is partly responsible for
all scientific advancements. Measurement contributes to the maturing of a concept
by quantifying it. Using measurement allows software processes to move from an
artisanal state to a controlled and repeatable state. Software engineers should design
and use sound measures to improve the maturity of the software processes.

Measure (Noun)

Variable to which a value is assigned as the result of measurement.

Note 1 to entry: The plural form “measures” is used to refer collectively to base
measures, derived measures and indicators.

Measurement Process

Process for establishing, planning, performing, and evaluating measurement within an
overall project or organizational measurement structure.

Measurement Process Owner

Individual or organization responsible for the measurement process.
ISO 15939 [ISO 17c]

Measuring allows us to understand the past, better inform current activities and
try to predict the quality of developed products. This capacity will benefit projects
where performance has not always been very precise historically with unclear sched-
ules, budget overruns, and final products that include defects. In the past, measure-
ment was considered as overhead to the project. Software development managers use
measurement in their processes and set objectives. Measurement results are then used
to take short term and active decisions during delivery and operation of systems. This
helps identify and solve business-IT alignment issues or even with assigning work
dynamically. For example, Google’s rule of thumb is that a system reliability engi-
neer must spend 50% of his time on software development/maintenance. To enforce

10.1 Introduction—the Importance of Measurement 401

Software
engineering
management

Software
engineering

measurement

Software
engineering
management

tools

Initiation and
scope

definition

Determination
and negotiation
of requirements

Determining
satisfaction of
requirements

Determining
closure

Establish and
sustain
measurement
commitment

Plan the
measurement
process

Perform the
measurement
process

Evaluate
measurement

Closure
activities

Process
planning

Determine
deliverables

Effort, schedule,
and cost
estimation

Resource
allocation

Risk
management

Quality
management

Plan
management

Reporting

Control process

Monitor process

Implementation
of measurement
process

Implementation
of plan

Software
acquisition and
supplier contract
management

Feasibility
analysis

Process for the
review and
revision of
requirements

Software
project

planning

Software
project

enactment

Reviewing and
evaluating
performance

Closure
Review and
evaluation

Figure 10.2 Software engineering measurement as proposed by the SWEBOK [SWE 14].

this threshold, they measure where time is spent and use this measure to ensure that
teams consistently follow the proposed ratio.

Figure 10.2 describes the software engineering management knowledge area of
the SWEBOK. On the right hand side of the figure, four software engineering mea-
surement sub-topics are presented: (1) how to establish and sustain measurement
commitment; (2) how to plan the measurement process; (3) how to perform the mea-
surement process; and (4) how to evaluate measurement.

10.1.1 Standards, the Cost of Quality, and Software
Business Models

The concepts of cost of quality and software business models were presented in a
previous chapter. In terms of cost of quality, measurement is considered a preventive
cost in the sense that a large part of measurement investment focuses on error pre-
vention in all the stages of the software life cycle processes; for example, the cost of
collecting, analyzing, and sharing these data. Table 10.1 presents different cost items
with respect to preventive costs.

402 Chapter 10 Measurement

Table 10.1 Preventive Costs

Major
category Sub-category Definition Typical cost item

Preventive
cost

Establish quality
fundamentals

Efforts to define quality
measures, establish
objectives, standards and
thresholds, and analysis
required on data.

Definition of success
criteria for acceptance
testing and quality
standards/guidance.

Interventions
toward
projects and
processes

Efforts to prevent bad
quality or improve
process quality.

Training, process
improvement,
measurement
collection, and
analysis.

Source: Adapted from Krasner (1998) [KRA 98].

Measures are often used in the following software business models: custom sys-
tems written on contract and mass-market software. In these business models, poli-
cies, processes, and procedures are often used and followed closely to control the
development progress and minimize risks and the impact of defects.

In this chapter, the first topic described in detail is the measurement processes as
described in ISO 12207 and ISO 9001. To illustrate how to implement these recom-
mendations, we then present the practical software and systems measurement (PSM)
which was initially developed to guide American Defense software projects and later
became an influential component that led to the emergence of the ISO/IEC/IEEE
15939 standard on software measurement [ISO 17c]. The ISO 15939 standard is also
summarized to provide an overview of the software measurement process. After this
introduction to the topic, the CMMI point of view is then presented. Next, we discuss
how the survey can be an efficient measurement tool. It is another illustration of a
simple measurement process. Then, the use of measurement in very small entities is
presented. Finally, as with all the other chapters of the book, the last section describes
the measurement requirements of IEEE 730 that should be included in the software
quality assurance (SQA) plan (SQAP) of a project. We conclude with a review of how
to successfully implement a software measurement program in your organization as
well as suggestions on how to avoid pitfalls.

10.2 SOFTWARE MEASUREMENT ACCORDING TO
ISO/IEC/IEEE 12207

Measurement is one of the many processes described in the ISO 12207 standard. Its
purpose is to collect, analyze, and report objective data and information to support
effective software management and demonstrate the quality of the products, services,
and processes [ISO 17].

10.3 Measurement According to ISO 9001 403

As a result of the successful implementation of the measurement process
[ISO 17]:

a) information needs are identified;

b) an appropriate set of measures, based on the information needs, is identified
or developed;

c) required data is collected, verified, and stored;

d) the data is analyzed and the results interpreted;

e) information items provide objective information that supports decisions.

The project shall implement the following activities and tasks in accordance with
applicable organizational policies and procedures with respect to the measurement
process [ISO 17]:

– Prepare for measurement:
1) define the measurement strategy;
2) describe the characteristics of the organization that are relevant to measure-

ment, such as business and technical objectives;
3) identify and prioritize the information needs.
4) select and specify measures that satisfy the information needs.
5) define data collection, analysis, access, and reporting procedures.
6) define criteria for evaluating the information items and the measurement

process.
7) identify and plan for the necessary enabling systems or services to be used.

– Perform measurement:
1) integrate manual or automated procedures for data generation, collection,

analysis, and reporting into the relevant processes.
2) collect, store, and verify data.
3) analyze data and develop information items.
4) record results and inform the measurement users.

To obtain an overview of the measurement process, ISO 12207 refers the reader
to the ISO 15939 standard that will be presented in a later section.

10.3 MEASUREMENT ACCORDING TO ISO 9001

ISO 9001 highlights the fact that a quality system needs a measurement component
to be efficient. In addition to the typical process components, Figure 10.3 describes
where performance measurement applies.

Clause 7.1.5 of ISO 9001 entitled “Monitoring and measuring resources”
describes some measurement obligations [ISO 15]: “The organization shall deter-
mine and provide the resources needed to ensure valid and reliable results when

404 Chapter 10 Measurement

Starting point

Source of
inputs

Possible controls and check
points to monitor and
measure performance

Inputs Activities
Receivers

of
outputs

Outputs

End point

Subsequent
processes e.g.
at customer
(internal or
external), at
other relevant
interested
parties

Matter,
energy,
information,
e.g. in the form
of product,
service, decision

Matter,
energy,
information,
e.g. in the form
of materials,
resources,
requirements

Predecessor
processes
e.g. at providers
(internal or
external) at
customers, at
other relevant
interested
parties

Figure 10.3 Measuring process performance according to ISO 9001 [ISO 15].

monitoring or measuring is used to verify the conformity of products and services
to requirements.”

Clause 9.1, entitled “Monitoring, measurement, analysis and evaluation,” states
that [ISO 15]: “The organization shall determine:

– what needs to be monitored and measured;

– the methods for monitoring, measurement, analysis, and evaluation needed to
ensure valid results;

– when the monitoring and measuring shall be performed;

– when the results from monitoring and measurement shall be analyzed and eval-
uated.”

Lastly, clause 10.3 of the ISO 9001 standard entitled “Continual improvement”
describes another necessity of the use of measurement [ISO 15]: “The organization
shall continually improve the suitability, adequacy and effectiveness of the quality
management system.”

10.4 THE PRACTICAL SOFTWARE AND SYSTEMS
MEASUREMENT METHOD

The PSM methods were developed for the American defense industry [JON 03].
It served as a major input to the ISO 15939 standard on systems and software

10.4 The Practical Software and Systems Measurement Method 405

engineering measurements. Given that standards do not usually explain how things
should be done, the PSM is useful for its practical examples.

The objective of the PSM is to provide measurement guidelines to software
project managers. In it, directives, examples, lessons learned and case studies are
presented. It provides a measurement framework that is ready to be used by software
project managers. It also explains how to define and design a software measurement
program to support the information needs of customers when they acquire software
and systems from external providers.

The PSM covers three perspectives: (1) the project manager so as to provide a
good understanding of the measures and how to use them to manage their project; (2)
the technical staff that conducts measurement during planning and execution phases;
and (3) the management team so that they can understand the measurement require-
ments associated with software.

The PSM is available for free at: http://www.psmsc.com/

The nine principles of the PSM are (adapted from [PSM 00]):

1) Use issues and objectives to drive the measurement requirements.

2) Define and collect measures based on the technical and management pro-
cesses.

3) Collect and analyze data at a level of detail sufficient to identify and isolate
problems.

4) Implement an independent analysis capability.

5) Use a systematic analysis process to trace the measures to the decisions.

6) Interpret the measurement results in the context of other project information.

7) Integrate measurement into the project management process throughout the
life cycle.

8) Use the measurement process as a basis for objective communications.

9) Focus initially on project-level analysis.

As shown in Figure 10.4, quantitative project management includes the follow-
ing specialities: risk management, measurement, and financial performance manage-
ment. The PSM concentrates primarily on the measurement process but also includes
the interface to other specialties like risk management and financial performance
management.

let &hbox {char '046}http://www.psmsc.com/
http://www.psmsc.com/

406 Chapter 10 Measurement

Risk
management
plan

Assess
risk

Manage
risk

Measurement plan

Plan
measurement

Collect
measures

Establish
budget
and schedule

Financial
performance
plan

Assess
performance

Figure 10.4 The three disciplines of quantitative management [PSM 00].

It has been observed that measurement is not as effective if it used in an indepen-
dent and isolated process. Measurement can be effective in describing overall project
challenges and also point to issues in interrelated systems. Measurement will be more
effective when included in all aspects of project management. For example, it will
be more effective when integrated with risk management and financial performance
management [PSM 00]. Another chapter of this book discusses risk management
in detail.

The PSM is composed of the following parts [PSM 00]:

– Part 1, The Measurement Process, describes the measurement process at a sum-
mary level and provides an overview of measurement tailoring, application,
implementation, and evaluation. Part 1 explains what is required to implement
the measurement process for a project.

– Part 2, Tailor Measures, describes how to identify project issues, select appro-
priate measures, and define a project measurement plan.

– Part 3, Measurement Selection and Specification Tables, provides a series of
tables that help the user select the measures that best address the project’s
issues. These tables support the detailed tailoring guidance of Part 2.

– Part 4, Apply Measures, describes how to collect and process data, analyze
the measurement results, and use the information to make informed project
decisions.

10.4 The Practical Software and Systems Measurement Method 407

– Part 5, Measurement Analysis and Indicator Examples, provides examples of
measurement indicators and associated interpretations.

– Part 6, Implement Process, describes the tasks necessary to establish the mea-
surement process within an organization.

– Part 7, Evaluate Measurement, identifies assessment and improvement tasks
for the measurement program as a whole.

– Part 8, Measurement Case Studies, provides three different case studies that
illustrate many of the key points made throughout the Guide. The case stud-
ies address the implementation of a measurement process on a DoD weapons
system, an information system, and a government system in the operations and
maintenance life cycle phase.

– Part 9, Supplemental Information, contains a glossary, list of acronyms, bibli-
ography, project description, comment form, and an index.

– Part 10, Department of Defense Implementation Guide, this addendum pro-
vides information specific to implementing the PSM guidance on Department
of Defense programs. It addresses implementation issues of particular concern
to DoD acquisition organizations.

The PSM Insight tool, which can be found at www.psmsc.com/PSMI.asp, has been
designed to run on PC’s. This tool automates the PSM measurement process and can
be adapted. It contains three modules:

– customization;

– data entry; and

– analysis.

The PSM approach to software measurement, as illustrated in Fig-
ure 10.5, addresses the following four key measurement activities (adapted from
[PSM 00]):

1) Tailor Measures
The objective of this activity is to define the set of software and system mea-
sures that will provide the best understanding of challenges in the project
at the lowest cost. A measurement plan documents the result of this first
activity.

let &hbox {char '046}www.psmsc.com/PSMI.asp
http://www.psmsc.com/PSMI.asp

408 Chapter 10 Measurement

Core measurement process

Information
needs

Evaluate
measurement

Improvement
actions

Analysis
results and
performance
measures

Scope of PSM

User feedback

Analysis results

Implement
process

Tailor
measures

Apply
measures

Technical and
management

processes

Measurement
plan

New
issues

Figure 10.5 Measurement process activities proposed by the PSM [PSM 00].

2) Apply Measures
During this activity, measures are analyzed in order to provide the feedback
necessary for effective decision making. Information on risks and financial
performance can also be taken into account for decision making.

3) Implement Process
This activity consists of three tasks:
– obtain organizational support: including the right to measure at all organi-

zational levels;
– define responsibilities concerning measurement;
– provide resources, purchase required tools, and recruit personnel for this

process.

4) Evaluate Measurement
This activity includes four tasks:
– evaluate measures and indicators as well as their results;
– evaluate the measurement process according to three perspectives: (1) the

quantitative performance evaluation of the measurement process; (2) a con-
formity assessment of the process executed versus the one that was planned;
and (3) the measurement capability as compared to a standard recommen-
dation;

– update the experience base with lessons learned;
– identify and implement improvements.

10.4 The Practical Software and Systems Measurement Method 409

The key roles and responsibilities associated with measuring are (adapted from
[PSM 00]):

– executive manager: is typically a manager responsible for more than one
project. This manager defines the expected high level performance and the
business objectives. He ensures that individual projects align with the general
measurement policy. He uses the measurement outputs to make decisions;

– project or technical manager: this individual or group identifies the project
challenges, reviews the measurement analysis, and acts on the information. In
the case of the acquisition of complex software, the customer and the external
provider will have a dedicated project manager that will use this information
to make joint decisions.

– measurement analyst: this role can be assigned to a person or a group. The
responsibilities include the design of the measurement plan, data collection and
analysis, as well as the presentation of results to all the stakeholders. Typically,
in large and complex software acquisition projects, both the external provider
and the customer have a measurement analyst assigned to the project;

– project team: is the team responsible for the acquisition, development, and
maintenance/operation of the software and systems. This team can include gov-
ernment or industry organizations as part of an Integrated Product Team (IPT).
The project team collects measurement data periodically and uses it to orient
engineering decisions.

The PSM defines seven categories of information that should be produced for
software projects (adapted from [MCG 02]):

1) schedule: this measurement category aims at tracking the progress of the
project at each step and milestone. A project that experiences delays will
have a hard time meeting its delivery objectives. The project manager may
have to make decisions such as reducing the functionality to be delivered or
sacrificing its quality;

2) resources and costs: this measurement category evaluates the balance between
the work to be done and the availability of human resources to do this work.
A project that overruns its personnel budget will have difficulty completing
the work unless some functionality is dropped or the quality reduced;

3) software size and stability: this measurement category addresses the stabil-
ity of the progress made with respect to the delivery of functional and non-
functional requirements. It uses the delivered and tested functional size to
assess the delivery trend. The stability measurement considers functional
change rates. Scope creep is characterized by a growing number of change
requests being submitted. This situation will likely extend the schedule and
increase the human resource costs;

410 Chapter 10 Measurement

4) product quality: another dimension of a software project that needs to
be controlled is the product quality. This measurement category consid-
ers the current state of the defect removal trend for both functional and
non-functional requirements. When a defective product is delivered to the
customer acceptance testing step, it generates a large number of defect
reports. Forcing delivery in this condition will drastically impact maintenance
efforts;

5) process performance: this measurement category assesses the ability of the
external providers to meet both the contract clauses as well as the require-
ments identified in the attachments of the contract. An external provider with
weak control of his processes or experiencing weak productivity is an early
sign of possible delivery problems;

6) effectiveness of technology used: this measurement category measures the
effectiveness of the technology chosen to be used by the project to address the
requirements. Relatively technical measures assess the software engineering
techniques, like reuse, development methods and frameworks and software
architectural concerns. It aims at discovering the use of risky technologies or
those that have not been mastered;

7) user satisfaction: this last category assesses how the customers feel about the
progress of the project and how it meets their requirements.

The SMERFS Tool

The SMERFS (Statistical Modeling and Estimation of Reliability Functions for Systems)
tool is used to analyze software, hardware and system data with the help of reliability
modeling. This tool, available at www.slingcode.com/smerfs/, is free and included with
the PSM Insight tool. SMERFS tries to help answer the following questions:

– Is the software ready for release to the customer?

– How many more tests will be required before delivery?

– Does this software require significantly more rework?

This tool was developed by Dr. William Farr. To use it, five steps have to be followed:

– Step 1. Record failure data.

– Step 2. Draw a failure graph.

– Step 3. Identify a curve that best matches the observations.

– Step 4. Assess the precision of the proposed curve.

– Step 5. Use the prediction model.

let &hbox {char '046}www.slingcode.com/smerfs/
http://www.slingcode.com/smerfs/

10.5 ISO/IEC/IEEE 15939 Standard 411

The next section presents the ISO/IEC/IEEE 15939 standard, which is the current
international standard for software process measurement.

10.5 ISO/IEC/IEEE 15939 STANDARD

This section presents four key software measurement activities of ISO 15939 as well
as examples of measures. ISO 15939 defines a software measurement process that
applies to both the systems and software engineering disciplines for software suppli-
ers and acquirers.

The ISO 15939 standard is aligned with the measurement requirements of ISO
9001. It elaborates the measurement process for software projects as described in ISO
15288 and ISO 12207.

Measure (Verb)

Make a measurement.

Measurement Experience Base

Data store that contains the evaluation of the information products and the measurement
process as well as any lessons learned during the measurement process.

ISO 15939 [ISO 17c]

In this standard, the measurement process is represented by a model that
describes the activities and tasks to specify, implement, and interpret results. It does
not describe how to perform these tasks nor give examples of measures. Its purpose is
to describe the activities and tasks that are necessary to successfully identify, define,
select, apply, and improve measurement within an overall project or organizational
measurement structure. It also provides definitions for measurement terms commonly
used within the system and software disciplines [ISO 17c].

As a result of the successful implementation of the measurement process, you
can expect the following outcomes [ISO 17c]:

a) information needs are identified;

b) an appropriate set of measures, based on the information needs, is identified
or developed;

c) required data is collected, verified, and stored;

d) the data is analyzed and the results interpreted;

e) information items provide objective information that supports decisions;

412 Chapter 10 Measurement

f) organizational commitment for measurement is sustained;

g) identified measurement activities are planned;

h) the measurement process and measures are evaluated;

i) improvements are communicated to the measurement process owner.

Note that the first five outcomes presented above are the same as those described
in ISO 15288 and ISO 12207.

10.5.1 Measurement Process According to ISO 15939

A software measurement process should detail its activities and tasks to achieve its
goal. Figure 10.6 presents the reference process model. It contains four activities,
where each has a certain number of tasks [ISO 17c]:

1) Establish and sustain measurement commitment;

2) Prepare for measurement;

3) Perform measurement;

4) Evaluate measurement.

The model includes a feedback loop to the information technology life cycle
processes and assumes that the organization has formalized them (i.e., technical and
management processes). The activities are represented by an iterative cycle allow-
ing for continuous feedback and improvement. This is an adaptation of the Plan-Do-
Check-Act model widely used in process improvement.

The measurement repository described in Figure 10.6 collects data during a
project iteration and stores historical data for all projects and software engineering
processes.

The typical functional roles that are mentioned in the ISO 15939 standard are:
stakeholder, sponsor, measurement user, measurement analyst, data provider, and
measurement process owner.

10.5.2 Activities and Tasks of the Measurement Process

The measurement process is launched by the measurement requirements, also known
as the technical and management information needs of the organization. The activities
and tasks are described in Figure 10.7.

10.5.3 An Information Measurement Model
of ISO 15939

Annex A of the ISO 15939 standard is only informative. It presents the model
that links the information needs to the measures. This model shows what the

R
eq

ui
re

m
en

ts
 fo

r
m

ea
su

re
m

en
t

Te
ch

ni
ca

l &
m

an
ag

em
en

t
p

ro
ce

ss
es

C
om

m
itm

en
t

C
or

e
m

ea
su

re
m

en
t p

ro
ce

ss

P
re

p
ar

e
fo

r
m

ea
su

re
m

en
t

M
ea

su
re

m
en

t e
xp

er
ie

nc
e

b
as

e

M
ea

su
re

m
en

t u
se

r
fe

ed
b

ac
k

In
fo

rm
at

io
n

p
ro

d
uc

ts
In

fo
rm

at
io

n
ne

ed
s

P
er

fo
rm

m
ea

su
re

m
en

t
E

va
lu

at
e

m
ea

su
re

m
en

t

E
st

ab
lis

h
&

 s
us

ta
in

m
ea

su
re

m
en

t
co

m
m

itm
en

t

Im
p

ro
ve

m
en

t a
ct

io
ns

P
la

nn
in

g
in

fo
rm

at
io

n

In
fo

rm
at

io
n

p
ro

d
uc

ts
 &

p
er

fo
rm

an
ce

m
ea

su
re

s

In
fo

rm
at

io
n

p
ro

d
uc

ts
an

d
 r

es
ul

ts

F
ig

ur
e

10
.6

IS
O

15
93

9
so

ft
w

ar
e

m
ea

su
re

m
en

tp
ro

ce
ss

m
od

el
[I

SO
17

c]
.

So
ur

ce
:S

ta
nd

ar
ds

C
ou

nc
il

of
C

an
ad

a.

414 Chapter 10 Measurement

- Activity 1: Establish and sustain measurement commitment

- Accept the requirements for measurement

- Assign resources

- Activity 2: Prepare for measurement

- Define the measurement strategy

- Describe the characteristics of the organization that are relevant to
measurement.

- Identify and prioritize the information needs

- Select and specify measures that satisfy the information needs

- Define data collection, analysis, access, and reporting procedures

- Define criteria for evaluating the information items and the
measurement process

- Identify and plan for the enabling systems or services to be used

- Review, approve, and provide resources for measurement tasks

- Acquire and deploy supporting technologies

- Activity 3: Perform measurement

- Integrate procedures for data generation, collection, analysis, and
reporting into the relevant processes

- Collect, store, and verify data

- Analyze data and develop information items

- Record results and inform the measurement users

- Activity 4: Evaluate measurement

- Evaluate information products and the measurement process

- Identify potential improvements.

Figure 10.7 The software measurement process activities and tasks [ISO 17c].
Source: Standards Council of Canada.

measurement planner has to design during the planning, execution and evaluation
stages. Three types of measures are presented: base measures, derived measures,
and indicators. In this section, the measurement model is explained and followed by
an example of its use.

Attribute

Property or characteristic of an entity that can be distinguished quantitatively or qualita-
tively by human or automated means.

Indicator

Measure that provides an estimate or evaluation of specified attributes derived from a
model with respect to defined information needs.

10.5 ISO/IEC/IEEE 15939 Standard 415

Scale

Ordered set of values, continuous or discrete, or a set of categories to which the attribute
is mapped.

Note 1 to entry: The type of scale depends on the nature of the relationship between
values on the scale. Four types of scale are commonly defined:

– nominal: the measurement values are categorical;

– ordinal: the measurement values are rankings;

– interval: the measurement values have equal distances corresponding to equal
quantities of the attribute;

– ratio: the measurement values have equal distances corresponding to equal quan-
tities of the attribute, where the value of zero corresponds to none of the attribute.

Base Measure

Measure defined in terms of an attribute and the method for quantifying it.
Note: A base measure is functionally independent of other measures.

Derived Measure

Measure that is defined as a function of two or more values of base measures.

Unit of Measurement

Particular quantity defined and adopted by convention, with which other quantities of the
same kind are compared in order to express their magnitude relative to that quantity.

ISO 15939

Figure 10.8 presents the model and its components. Components are explained
from the top to the bottom of the figure [ISO 17c]:

– An entity is an object (e.g., a process, product, project, or resource) that is to
be characterized by measuring its attributes. Typical engineering objects can
be classified as products (e.g., design document, network, source code, and test
case), processes (e.g., design process, testing process, and requirements analy-
sis process), projects, and resources (e.g., the systems engineers, the software
engineers, the programmers, and the testers). An entity may have one or more
properties that are of interest to meet the information needs. In practice, an
entity can be classified into more than one of the above categories.

– An attribute is a property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by human or automated means. An entity may
have many attributes, only some of which may be of interest for measurement.
The first step in defining a specific instantiation of the measurement informa-
tion model is to select the attributes that are most relevant to the measurement
user’s information needs. A given attribute may be incorporated in multiple
measurement constructs supporting different information needs.

– A measure is defined in terms of an attribute and the method for quantify-
ing it. A measure is a variable to which a value is assigned. A base measure is

416 Chapter 10 Measurement

Information
needs

Analysis
model

Measurement
function

Measurement
method

Measurement
method

Base measure Base measure

Derived
measure

Derived
measure

AttributeAttributeEntities Property relevant to
information needs

Operations quantifying an
attribute against a scale

A measure of a single
attribute by a specific
method

Algorithm combining two
or more base measures

Quantity defined as a
function of two or more
measures

Algorithm combining measures
and decision criteria

Estimate or evaluation that
provides a basis for decision
making

Interpretation Indicator

Information
product

Figure 10.8 Information measurement model [ISO 17c].
Source: Standards Council of Canada.

functionally independent of other measures. A base measure captures informa-
tion about a single attribute. Data collection involves assigning values to base
measures. Specifying the expected range or type of values of a base measure
helps to verify the quality of the data collected.

– A measurement method is a logical sequence of operations, described gener-
ically, used in quantifying an attribute with respect to a specified scale. The
operations may involve activities such as counting occurrences or observ-
ing the passage of time. The same measurement method may be applied to
multiple attributes. However, each unique combination of an attribute and a
method produces a different base measure. Some measurement methods may
be implemented in multiple ways. A measurement procedure describes the spe-
cific implementation of a measurement method within a given organizational
context:
◦ The type of measurement method depends on the nature of the operations

used to quantify an attribute. Two types of method may be distinguished:
� Subjective: quantification involving human judgment.
� Objective: quantification based on numerical rules such as counting. These

rules may be implemented by human or automated means.

– A derived measure is a measure that is defined as a function of two or more val-
ues of base measures. Derived measures capture information about more than

10.5 ISO/IEC/IEEE 15939 Standard 417

one attribute or the same attribute from multiple entities. Simple transforma-
tions of base measures (for example, taking the square root of a base measure)
do not add information, thus do not produce derived measures. Normalization
of data often involves converting base measures into derived measures that can
be used to compare different entities.

– A function is an algorithm or calculation performed to combine two or more
base measures. The scale and unit of the derived measure depend on the scales
and units of the base measures from which it is composed as well as how they
are combined by the function.

– An indicator is a measure that provides an estimate or evaluation of specified
attributes derived from a model with respect to defined information needs. Indi-
cators are the basis for analysis and decision making. These are what should be
presented to measurement users. Measurement is always based on imperfect
information, so quantifying the uncertainty, accuracy, or importance of indica-
tors is an essential component of presenting the actual indicator value.

– An information product is one or more indicators and their associated interpre-
tations that address an information need; for example, a comparison of a mea-
sured defect rate to planned defect rate along with an assessment of whether
or not the difference indicates a problem.

10.5.3.1 Example of a Measure

Figure 10.9 presents an example of a productivity measure originating from annex A
of ISO 15939. The decision maker in this example needs to select a specific productiv-
ity level as the basis for project planning. The measurable concept is that productivity
is related to effort expended and number of requirements implemented. Thus, effort
and requirements are the measurable entities of concern.

This example assumes that the productivity can be estimated based on past
performance. Thus, data for the base measures (numbered entries in the following
table) need to be collected and the derived measure computed for each project in the
data store.

The decision criteria are shown at the bottom of Figure 10.9. They are numeric
boundaries or objectives used to assess the need for an action or for additional atten-
tion to productivity. Decision criteria help in the interpretation of a measure. They
can be calculated or be based on the conceptual understanding of what is expected.
Regardless of how the productivity number is arrived at, the uncertainty inherent in
engineering means that there is a considerable probability that the estimated produc-
tivity will not be realized exactly. Estimating productivity based on historical data
enables the computation of confidence limits that help to assess how close actual
results are likely to come to the estimated value [ISO 17c].

Informative annex A of ISO 15939 also describes a “software artifact” qual-
ity measure followed by an example of project advancement measures. Informative

418 Chapter 10 Measurement

Information need Estimate productivity of future projects

Measureable concept Project productivity

1. Requirement implemented by past projects
2. Effort expended by past projects

Attributes 1. Shall statements
2. Timecard entries (recording effort)

Base measures 1. Project X requirements
2. Project X hours of effort

Measurement method 1. Count “Shalls” in requirements specification
2. Add timecard entries together for project X

Type of measurement method 1. Objective
2. Objective

Scale 1. Integers from zero to infinity
2. Real numbers from zero to infinity

Type of scale 1. Ratio
2. Ratio

Unit of measurement 1. Line
2. Hour

Derived measure Project X productivity

Measurement function Divide project X requirements implemented by project X hours of effort

Indicator Average productivity

Model Compute mean and standard deviation of all project productivity values

Decision criteria Computed confidence limits based on the standard deviation indicate the
likelihood that an actual result close to the average productivity will be
achieved. Very wide confidence limits suggest a potentially large departure
and the need for contingency planning to deal with this outcome.

Relevant entities

Figure 10.9 Example of a measurement construct for productivity [ISO 17c].
Source: Standards Council of Canada.

annex B of the standard shows the mapping between work products and the measure-
ment activities that have created the artifact. The measurement plan is the result of
the execution of the planned activities and tasks. Informative annex F is an informa-
tive section listing typical information found in a measurement plan. Figure 10.10
presents examples.

Informative annex C of the standard describes criteria for selecting a measure,
whereas informative annex D presents evaluation criteria for information products.
Informative annex E presents evaluation criteria for the measurement process and
informative annex G describes criteria for reporting information elements.

10.6 MEASUREMENT ACCORDING TO
THE CMMI MODEL

This section will explain some of the measurement practices proposed by the staged
representation of the CMMI®-DEV model. The practices appear in many process

10.6 Measurement According to the CMMI Model 419

- Characterization of the organizational unit;

- Business and project objectives;

- Prioritized information needs, and how they link to the business, organizational, regulatory,
product or project objectives;

- Definition of the measures and how they relate to the information needs;

- Responsibility for data collection and sources of data;

- Schedule for data collection (e.g., at the end of each inspection, monthly);

- Tools and procedures for data collection (e.g., instructions for executing a static analyzer);

- Data storage;

- Requirements for data verification;

- Data entry and verification procedures;

- Data analysis plan including frequency of analysis and reporting;

- Necessary organizational or process changes to implement the measurement plan;

- Criteria for the evaluation of the information products;

- Criteria for the evaluation of the measurement process;

- Confidentiality constraints on the data and information products, and actions/precautions
necessary to help ensure confidentiality;

- Schedule and responsibilities for the implementation of measurement plan including pilots and
organizational unit wide implementation;

- Procedures for configuration management of data, measurement experience base, and data
definitions.

Figure 10.10 Examples of information included in a measurement plan [ISO 17c].
Source: Standards Council of Canada.

areas of the model: in the generic goals (GG), in the generic practices (GP), in the
specific goals (SG), and in the specific practices (SP) of specific process areas like
“project planning,” “project monitoring and control,” “organizational process defini-
tion,” and “quantitative project management.”

Measures collected by maturity level 1 organizations are often of poor reliability
because at that maturity level, their processes are often chaotic and not documented.
At maturity level 2, also referred to as “managed,” organizations have processes
that are planned and executed. Therefore, at that level, it is possible to measure
processes and software products. We recall here that one of the generic practices of
maturity level 2 is “GP 2.8 Monitor and Control the Process,” and it refers to some
process attributes such as the percentage of projects that use progress and perfor-
mance measures and the number of outstanding open and closed corrective actions
[SEI 10a].

Concerning software products developed by suppliers, the CMMI-DEV recom-
mends that the acquirer needs to closely follow the project quality, schedule, and
costs. Measurement and data analysis are key activities of project monitoring.

The ISO 15939 standard was used by the CMMI-DEV “measurement and analy-
sis” process area. This allows both the systems engineering and software engineering
communities to share the same measurement recommendations. The next text box

420 Chapter 10 Measurement

describes the level 2 objectives and specific practices of the measurement and analy-
sis process area.

Measurement and Analysis

The purpose of measurement and analysis (MA) is to develop and sustain a measurement
capability used to support management information needs.

SG 1 Align Measurement and Analysis Activities

Measurement objectives and activities are aligned with the identified information needs
and objectives.

– SP 1.1 Establish measurement objectives: establish and maintain measurement objec-
tives originating from identified information needs and objectives;

– SP 1.2 Specify measures: specify measures to address measurement objectives;

– SP 1.3 Specify data collection and storage procedures: specify how measurement data
are obtained and stored;

– SP 1.4 Specify analysis procedures: specify how measurement data are analyzed and
communicated.

SG 2 Provide Measurement Results

Measurement results, which address identified information needs and objectives, are pro-
vided.

– SP 2.1 Obtain measurement data: obtain specified measurement data;

– SP 2.2 Analyze measurement data: analyze and interpret measurement data;

– SP 2.3 Store data and results: manage and store measurement data, measurement spec-
ifications, and analysis results;

– SP 2.4 Communicate results: communicate results of measurement and analysis activ-
ities to all relevant stakeholders.

CMMI-DEV

This process area is used by many other process areas of the model. For exam-
ple, for measuring project performance, the project monitoring and control process
area should be consulted; for controlling software products, refer to the configuration
management process area; for requirements traceability, the requirements manage-
ment process area contains measurement guidelines; for organizational measurement,
refer to the organizational process definition process area. To learn more about the
appropriate use of statistical methods, the quantitative project management process
area of CMMI-DEV provides more guidance.

10.8 The Survey as a Measurement Tool 421

SEI Measurement Program

The “Software Engineering Measurement and Analysis” (SEMA) program aims at study-
ing trends, improving current solutions and promoting underutilized technologies. It also
develops and improves software measurement and analysis methods and tools. To accel-
erate the adoption of proven methods and tools, this program also provides case studies,
training and consulting.

www.sei.cmu.edu/measurement/index.cfm

The Software Engineering Information Repository (SEIR)

The objective of the SEIR is to offer a free and open forum for exchange and contributions
of process improvement information.

https://seir.sei.cmu.edu/seir/

10.7 MEASUREMENT IN VERY SMALL ENTITIES

Worldwide, there are a large number of Very Small Entities (VSEs) that develop and
maintain software. These are organizations, companies, departments, and projects
involving up to 25 people. In an earlier chapter, the ISO 29110 was introduced. ISO
29110 proposes a four-stage roadmap referred to as a profiles. The profiles apply
to VSEs in start-up mode; small projects that have a limited duration of six person-
months; those that create only one product with only one team; VSEs that have more
than a project with more than one team; and a VSE that wants to improve the man-
agement of its business and its competitiveness.

The activities of the ISO 29110 project management process that are related to
measurement are: project planning activity, where size, effort, calendar, and resources
are estimated and used in the preparation of the project plan, as well as in the project
assessment and control activity, where progress is evaluated against the project plan.

The tasks of the software implementation process of ISO 29110 related to mea-
surement are mainly those related to defects identified and corrected during reviews
and testing.

10.8 THE SURVEY AS A MEASUREMENT TOOL

Surveys are used by organizations to obtain an overview of complex questions, aid
problem resolution, and support decision making. Surveys are tools that allow infor-
mation to be collected quickly and anonymously. It can be done during meetings
and, most often, using an internet survey tool that sends questionnaires or invites to
participants to answer a survey by clicking on a web link.

Concerning SQA, surveys can be used to obtain service satisfaction informa-
tion from individuals and organizations like developers, project managers, testers,
configuration management, and sometimes suppliers. For example, a few weeks after

let &hbox {char '046}www.sei.cmu.edu/measurement/index.cfm
http://www.sei.cmu.edu/measurement/index.cfm
let &hbox {char '046}https://seir.sei.cmu.edu/seir/
https://seir.sei.cmu.edu/seir/

422 Chapter 10 Measurement

the deployment of a new measurement program, surveys can be prepared by SQA to
assess the level of satisfaction of customers of the organization concerning its prod-
ucts and services.

In this section, two case studies are presented: one survey conducted by the SEI
concerning measurement and one survey conducted by the ISO working group for
VSEs.

What is a survey? According to Kasunic, of the SEI [KAS 05], a survey is a col-
lection of data and an analysis method where solicited individuals answer questions
or comment on declarations previously elaborated.

The SEI developed a survey process with seven steps [KAS 05]:

1) identify the research objectives;

2) identify and characterize the target audience;

3) design the sampling plan;

4) design and write the questionnaire;

5) pilot test the questionnaire;

6) distribute the questionnaire;

7) analyze results and write a report.

According to Kasunic, a good survey has to be systematic, impartial, represen-
tative, quantitative, and repeatable. Although surveys show good results compared
with other data collection techniques, they have limitations [KAS 05]:

– To generalize for a population, a survey must follow strict procedures in defin-
ing which participants are studied and how they are selected.

– Following the rules and implementing the survey with the rigor that is neces-
sary can be expensive with respect to cost and time.

– Survey data are usually superficial. It is not typically possible to go into any
detail—that is, we are not capable of digging deeply into people’s psyches
looking for fundamental explanations of their unique understandings or behav-
iors.

– Surveys can be obtrusive. People are fully aware that they are the subjects of a
study. They often respond differently than they might if they were unaware of
the researcher’s interest in them.

An Example of a Survey Questionnaire

The Acme Corporation is committed to satisfying their clients. We would like to obtain
your opinion regarding our ABC software. Please indicate your level of satisfaction as
well as the level of importance of each of the product characteristics.

10.8 The Survey as a Measurement Tool 423

On a scale of 1–5, circle the appropriate value that indicates your level of satisfaction
for each item. A score of 1 indicates that you are not satisfied and a score of 5 indicates
that you are very satisfied.

On a scale of 1–5, circle the appropriate value that indicates the level of importance
for each item. A score of 1 indicates that the item is not very important and a score of 5
indicates that the item is very important.

For each question, do not hesitate to add comments concerning your satisfaction
or dissatisfaction. If you have specific examples, please include them and describe any
suggestions you may have.

Ease of installation
Comments and suggestions

Ease of use
Comments and suggestions:

Satisfaction Importance

NS VS NI VI

Ease of installation 1 2 3 4 5 1 2 3 4 5

Comments and suggestions:

Ease of use 1 2 3 4 5 1 2 3 4 5

Comments and suggestions:

Legend: Very important (VI), Very satisfied (VS), Not satisfied (NS), Not important (NI)
Adapted from Westfall (2002) [WES 02]

The SEI conducted this survey to understand the state of the practice of software
measurement. The following text box describes the results.

An SEI Survey of the State of the Practice of Software Measurement

The Software Engineering Institute (SEI) conducted an initial survey to understand how
widely software measurement was used in the industry. This survey contained 17 ques-
tions and was distributed randomly to 15,180 software practitioners.

The survey results can be used to determine: (1) what measurement definitions and
implementation methods are used, (2) the types of measures that are most widely used,
and (3) what attitudes prevent the use of measurement.

424 Chapter 10 Measurement

The survey results indicate that, in an organization, managers and staff do not have
the same perception of measurement. Managers had a stronger response than staff regard-
ing the following items:

– understanding of the need for measuring;

– measurement allows teams to obtain better results;

– a documented process for collecting and reporting measures needs to be followed;

– definitions of measurement are generally well understood by their organization;

– measurable criteria exist for their products and services;

– corrective measures are taken when a limit has been breached.

Results show that the size of the organization has an impact on several survey items.
The table below presents the percentage of respondents that have answered “often” to
questions. This percentage increases slightly with the size of the organization.

Number of people in the
organization

Question ≤100 101– 499 ≥500

My team follows a documented process for transmitting
measurement data to management.

37.0% 46.4% 54.7%

I use measurement to understand the quality of the products
and/or services on which I am working.

38.4% 42.0% 52.8%

My team follows a documented process for collecting
measurement data.

42.3% 46.2% 53.1%

Corrective measures are taken when a limit has been breached. 35.1% 41.1% 46.2%
I understand the reasons why I collect data. 65.7% 71.6% 72.1%

Answers to some questions of the SEI survey on the use of measurement [KAS 05]
The complete survey questionnaire can be found in Appendix A of the SEI report.

[KAS 05]

A Survey of SEI on the State of the Practice of Measurement

Methods Used

The CMMI MA process area was identified by respondents as the measuring method most
often used to identify, collect, and analyze measurement data. About 56% of respondents
said they only use this process area, while 27.4% of respondents indicated that this was
the only method they used. As mentioned in the introduction of the survey, the population
for the survey consisted of those who had contacted the SEI. Therefore, these people may
have had prior knowledge of SEI’s products and services. A correct interpretation of the

10.9 Implementing a Measurement Program 425

results must take into account the possibility that the results were biased in favor of SEI
products and services.

About 41% of respondents said they only used one method to identify, collect, and
analyze measurement data, while 59% used two or more methods. About 21% reported
not using any measurement method.

Measures Used

The schedule and task effort were the measures which the respondents indicated were
used most often. Most respondents (97%) indicated that progress in regards to the sched-
ule was the most commonly used measure, while 93% indicated that the effort (time)
applied to tasks was the most used. The rate of increase of code, capacity, and stability
were measures which the respondents indicated that they used least often.

The frequency of measurement reports varied depending on the measure with most
respondents indicating that measures were reported on a weekly, monthly, or daily basis.

Adapted from Kasunic (2005) [KAS 05]

10.9 IMPLEMENTING A MEASUREMENT PROGRAM

First of all, we would think that measurement is a quick and easy thing to do. But
there are many obstacles to successfully implementing a measurement program:

– we do not know why we are collecting measures;

– we intend to collect too many measures;

– some measures are not collected in the same manner in other projects;

– there are no adequate tools to easily collect and analyze measurements;

– measures are deployed without having been tested in pilot projects;

– measurement adds to the current workload;

– we think measures will not be used;

– we believe measures will be used to assess our individual performance;

– there is no commitment to measurement from the organization;

– there is little support for the measurement program.

Impacts of Low Data Quality

Some problems related to the use of low quality data are:

– low quality estimates of project costs and schedules for future projects;

– difficulty tracking project costs and progress;

426 Chapter 10 Measurement

– inappropriate salary levels;

– inefficient testing processes;

– inferior quality systems moved to production;

– inefficient adjustments/changes to processes.

To overcome these potential obstacles, a seven-step implementation approach
has been created, tested, and is recommended [DES 95]:

1) demonstrate the value and potential of the measurement program to upper
management to gain their support;

2) implicate the delivery personnel early in the design of the program;

3) identify the key processes to be improved where most benefits would arise;

4) identify the measurement goals and objectives for these key processes;

5) design and publish the measurement program for comments;

6) identify the tools/processes to be used for measurement and test them;

7) launch a first pilot and then extend gradually.

10.9.1 Step 1: Management Commitment Build-Up

Senior managers do not readily see the relevance of initiating measurement programs
in software engineering since they perceive them to be expensive and bureaucratic.
They also mention significant time delays prior to obtaining the expected results and
the limited impact of these measurements which is limited to only a few sub-groups
within the whole software engineering department. Furthermore, they often get con-
tradictory advice from experts on the strategies for initiating a measurement program.

To address the issue of the relevance of measurement with respect to management
concerns, the benefits and alignment to organizational strategy must be identified for
the measurement program. This first step consists of finding the necessary informa-
tion that will help the managers make a decision on the relevance of implementing
a measurement program within the organization. Demonstration of the benefits of a
software engineering measurement program is challenging because many results are
not tangible and are realized over a long period of time.

“A large number of measurement programs die after their creation, usually because they
did not provide relevant information to users.”

Jones (2003) [JON 03]

10.9 Implementing a Measurement Program 427

10.9.2 Step 2: Staff Commitment Build-Up

It appears that there is almost always major reluctance from staff to accept a measure-
ment program. Project managers do not usually like control and productivity mea-
sures. On the one hand, nobody likes to be “measured.” On the other hand, when
measurement programs are implemented, they are often labor-intensive data collec-
tion processes. To address these issues, we must offer useful tools to automate the
data collection process. We must at the same time, find ways to help project managers
control the data collection process and develop analytical skills to extract information
from the data and measures available.

This step consists in finding the necessary arguments that will lead the staff
involved in the data collection process to accept and support the measurement
program.

10.9.3 Step 3: Selection of Key Processes
to be Improved

This step consists in evaluating the maturity level of the software development orga-
nization. The CMMI model and assessment results provide much more information
than the well-publicized single-digit maturity level. Based on this assessment of the
organizational maturity level, multiple key candidates for process improvements are
provided. Furthermore, the CMMI models helps with the selection of the priorities to
be given to the key processes targeted for improvement programs.

10.9.4 Step 4: Identification of the Goals and Objectives
Related to the Key Process

The purpose of this step is to determine the goals and objectives of the measurement
program. For each CMMI process area, there is one or more goals. A goal describes
the purpose of what should be achieved (e.g., improve the estimation of a develop-
ment project). An objective is the wording of a goal to be reached (with or without
specifying the achievement conditions) through measurable behavior over time.

Organizational goals must also correspond to the ability to achieve them. The
selection of key processes considering the organization’s maturity level is not enough.
Processes already in place are also important. From this perspective, an organization
should not have too many goals, and they must be prioritized. An organization cannot
achieve all of its goals within the first year if this organization is just embarking on a
measurement program.

10.9.5 Step 5: Design of the Measurement Program

This step consists in designing a measurement program that will allow management
not only to see if the objectives have been reached, but also to understand why if

428 Chapter 10 Measurement

Key process, goals

Objectives

Process

Tools

Entities
attributes

Definition

Document

Data base

Reports

Figure 10.11 Components of a software measurement program [DES 95].

they have not been reached. Figure 10.11 suggests the components of a measurement
program: tools, standards, definitions, and a choice of measures. The implementation
of this design will vary from one organization to another.

10.9.6 Step 6: Description of the Information System to
Support Measurement

This step consists in modeling all the measures to be collected to meet the objectives.
These measures must specify measurement units and, whenever feasible, be based on
standards.

This step must also define the validation process and the control reports.

10.9.7 Step 7: Deployment of the Measurement Program

This step consists in deploying a measurement program through:

– selection of a pilot site;

– personnel training;

– assigning responsibilities and tasks;

– setting-up the measurement group.

The responsibilities for the measurement objectives are distributed at different
levels for different types of staff: senior management, measurement program man-
ager, experts, and developers. This is illustrated in Table 10.2.

The success of creating and sustaining a software measurement program relies
on constant support from higher management. The known presence of a leader is
essential for other staff to contribute to measurement. The leader will often be part of
senior management and motivate personnel.

Ta
bl

e
10

.2
R

es
po

ns
ib

ili
ty

M
at

ri
x

[D
E

S
95

]

L
ev

el
/p

er
so

nn
el

U
pp

er
m

an
ag

em
en

t
M

ea
su

re
m

en
tp

ro
gr

am
m

an
ag

er
E

xp
er

ts
D

ev
el

op
er

s

St
ra

te
gi

c
D

efi
ne

st
ra

te
gi

c
ob

je
ct

iv
es

Su
pp

ly
in

fo
rm

at
io

n
ab

ou
t

th
e

m
ea

su
re

m
en

t
pr

og
ra

m
E

ns
ur

e
ob

je
ct

iv
es

ar
e

co
ns

is
te

nt

E
ns

ur
e

th
e

co
ns

is
te

nc
y

of
re

so
ur

ce
s

Ta
ct

ic
al

E
nd

or
se

an
d

pr
om

ot
e

th
e

m
ea

su
re

m
en

tp
ro

gr
am

A
pp

ro
ve

ta
ct

ic
al

ob
je

ct
iv

es

T
ra

ck
/v

al
id

at
e

th
e

co
he

re
nc

e
of

ob
je

ct
iv

es
A

ss
is

tt
he

le
ad

er
U

si
ng

th
e

ob
je

ct
iv

es
,d

efi
ne

th
e

en
tit

ie
s,

at
tr

ib
ut

es
an

d
m

ea
su

re
s

A
ss

is
td

el
iv

er
y

pe
rs

on
ne

l
C

re
at

e
re

po
rt

s
an

d
ha

ve
th

em
ap

pr
ov

ed
D

efi
ne

an
d

do
cu

m
en

t
re

so
ur

ce
s

Pa
rt

ic
ip

at
e

in
th

e
de

fin
iti

on
of

ta
ct

ic
al

ob
je

ct
iv

es

O
pe

ra
tio

na
l

Su
pp

ly
ne

ed
ed

re
so

ur
ce

s
A

pp
ro

ve
op

er
at

io
na

l
ob

je
ct

iv
es

M
an

ag
e

th
e

m
ea

su
re

m
en

t
pr

og
ra

m
Im

pl
em

en
tt

he
pr

og
ra

m
an

d
to

ol
s

Pr
ov

id
e

st
at

us
/r

ec
om

m
en

d
ad

ju
st

m
en

ts
to

th
e

m
ea

su
re

m
en

tp
ro

gr
am

Fo
llo

w
-u

p
an

d
im

pl
em

en
t

to
ol

s
C

on
du

ct
st

at
is

tic
al

an
al

ys
is

D
es

ig
n

th
e

m
ea

su
re

m
en

t
re

po
si

to
ry

Pa
rt

ic
ip

at
e

in
th

e
de

fin
iti

on
of

op
er

at
io

na
lo

bj
ec

tiv
es

Pa
rt

ic
ip

at
e

in
da

ta
co

lle
ct

io
n

430 Chapter 10 Measurement

There is probably a link between process maturity and the success of this pro-
gram. Only more mature organizations will support process improvement in a struc-
tured way by clarifying goals and objectives. Chances for success are better than if
this commitment is not communicated.

Published studies show that when measurement programs are not supported by
leadership, they do not last very long.

The next text box presents common errors of measurement.

Common Errors of Measurement:

– missing or unclear measurement objectives;

– absence of adequate resources and training;

– more than one operational definition;

– difficulty with the measurement method itself;

– undisciplined measurement process;

– conflicting motivations;

– low priority/interest for measuring and analyzing;

– absence of variation analysis;

– data capture errors.

Kasunic et al. (2008) [KAS 08]

10.10 PRACTICAL CONSIDERATIONS

This section presents base measures recommended by the SEI. In every software
project, management usually wants the same type of information (adapted from Car-
leton et al. (1992) [CAR 92]):

– what is the size of the product to be developed?

– do we have enough qualified/available personnel for the task ahead?

– can we meet the schedule?

– what level of quality is expected of this product?

– where are we according to plans?

– how are we doing on costs?

10.10 Practical Considerations 431

The base measures proposed by the SEI are: a size measure, an effort measure, a
calendar measure, and a quality measure. For size, the SEI recommends the number
of lines of source code for the following reasons (adapted from [PAR 92]):

– it is easy, simply count the end of line markers;

– counting methods do not greatly depend on the programming language;

– it is easy to automate the counting of physical lines of code;

– the majority of the data used to create cost estimation models like COCOMO
[BOE 00] used lines of code.

With regards to the effort measure, the SEI recommends using the number of
staff-hours. The organization should track both normal and overtime hours, whether
they are paid or not. Ideally, hours dedicated on important activities like requirements,
design, and testing should be calculated separately.

Effort

The number of labor units required to complete a schedule activity or work breakdown
structure component. Usually expressed as staff hours, staff days, or staff weeks.

Staff-Hour

An hour of effort expended by a member of the staff.
ISO 24765 [ISO 17c]

The SEI recommends also adopting structured methods to define two important
aspects with respect to a measure for schedules: the dates and the exit criteria. It is rec-
ommended to compare dates (planned and actual) associated with project milestones,
reviews, and audits.

Examples of calendar measures or schedule completion criteria are: milestones,
end of phase reviews, audits, and deliverables approved by the client.

With regards to quality, the SEI recommends measuring problems and defects.
It is recommended that the problems and software defects be used to help deter-
mine when products will be ready for customer delivery and to provide data for the
improvement of both processes and products.

432 Chapter 10 Measurement

Measures Available for all the Employees

In the audit chapter, we presented a case study for the Bombardier Transportation Com-
pany. It presented data measured during on-site evaluations. The evaluation team found
that this data was regularly produced for each of the organization’s projects. Measures
were used by project managers and displayed on a wall located near the cafeteria so that
all employees could view project data. Measures that were displayed included project
status and progress indicators, risk and project schedule, among others.

Measures available to all employees [LAP 07b]

Laporte et al. (2007) [LAP 07b]

10.10.1 Some Pitfalls with Regards to Measurement

In the 1990s, Professor Austin of the Harvard Business School [AUS 96] warned orga-
nizations about the unexpected side effects of measurement. Austin showed how a
measurement program may cause dysfunctional behavior and could even affect orga-
nizational performance. Most of the literature on software measurement focuses on its
technical aspects and ignores the cultural or human side of it [MCQ 04]. For example,
the following text box describes how human behavior can be modified when observed
and measured.

10.10 Practical Considerations 433

The Hawthorne Effect

The Hawthorne effect (also referred to as the observer effect) is a type of reactivity in
which individuals modify or improve an aspect of their behavior in response to their
awareness of being observed.

The original research at the Hawthorne Works in Cicero, Illinois, on lighting changes
and work structure changes such as working hours and break times were originally
interpreted by Elton Mayo and others to mean that paying attention to overall worker
needs would improve productivity. Later interpretations such as that done by Landsberger
suggested that the novelty of being research subjects and the increased attention from
such could lead to temporary increases in workers’ productivity. This interpretation was
dubbed “the Hawthorne effect.”

Wikipedia

We have seen that developing a measurement program is not easy. There are
many drawbacks that can lead to its failure. The first pitfall is to use the measure to
evaluate the performance of a developer instead of measuring the performance of the
process and the tools he is using. For example, data from an inspection process should
not be used to measure the productivity of the author of the document. A second
pitfall is to develop an ambitious action plan which attempts to measure everything
(as described in the following text box).

A Grand Measurement Plan

In a company that aimed to reach the SEI maturity level 2, the manager of the software
engineering department was proud to write a 45-page measurement plan. According to
this plan, dozens of measures would need to be collected on a regular basis. After a dis-
cussion with the manager, it was agreed to start measuring in a more modest way. He was
encouraged to start with some basic measures such as size, effort, the number of defects.

Another pitfall is to develop a measurement plan without involving developers.
Often when the measurement plan is shared, a wave of resistance may occur and could
result in its abandonment. You will also want to avoid developing measures that are
not used for decision making. In such cases, without understanding the use of the
proposed measures, developers will be less motivated to collect them in a precise

434 Chapter 10 Measurement

manner. For example, an organization may invest a large amount of time to measure
the size of its software without measuring other key aspects such as effort or qual-
ity. This size measurement, in and of itself, is not sufficient to make decisions. The
following text box shows other common pitfalls to measurement.

Measurement Pitfalls to Avoid

– Launching a measurement program that tries to measure too many elements (there are
dozens and dozens of items that can be measured); when launching a program, it should
be limited to a few basic measures, such as the size of a product, the effort to produce
it, product quality, project status, and the satisfaction of clients and developers;

– Launching an organization wide measurement program without having tested the pro-
gram with a pilot project;

– Launching a measurement program without having involved those who will be subject
to measurement: most people do not like being observed—a way to get staff commit-
ment is to ask them to participate with the development of the measurement objectives,
the identification of measures that will be collected, and how the measures will be col-
lected, stored, analyzed, used and published;

– Allowing some projects not to collect measures that are required of other projects;

– Not using the collected measurements: staff will gradually lose the motivation to collect
measures in their future project if they see that their efforts result in measurements that
are not used;

– Asking to collect measurements, such as the size of a software, without having pre-
cisely defined what is included and excluded in the measure: the result can neither be
compared to similar results from other projects nor used in decision making;

– Using the measure to assess, reward or punish the performance of staff: although stan-
dards, such as IEEE 1028, clearly specify that you should not make this mistake,
managers still insist on using measures to assess individual performance, grant salary
increases or promotions (staff could react to this situation by no longer providing mea-
sures, trying to sabotage the measurement program or providing measures that cannot
assess their performance);

– Producing beautiful color graphs that are not used in decision making;

– Not measuring the right things: not identifying the objectives of the organization and
then launching a measurement program that does not measure what might help it make
better technical and management decisions;

– Using measurement definitions that are inconsistent from one project to another;

– Predicting the results of a project (e.g., effort, schedule, quality) without ensuring that
the organization’s processes are stable.

10.11 The Human Side of Measurement 435

10.11 THE HUMAN SIDE OF MEASUREMENT

The attitude of the people involved in measurement, that is to say the definition of
measures, data collection, and analysis, is an important criterion to ensure that the
program is useful to the organization. Measurement can affect the behavior of the
individual observed. When something is measured, it is implied that it is important.

A software manager of a group of about 25 software engineers was briefed about the
cost and benefits of software reviews. When he was presented with the description of the
metrics that will be collected for each software review, he was very happy to discover
that he would have plenty of measures (e.g., number of defects injected, effort to correct
defects) to evaluate the performance of each software engineer. He told Professor Laporte
that, equipped with such measures, he would be able to compute the pay raise, identify
candidates for promotions, etc.

Professor Laporte explained to the manager that, once software engineers learn that
review measures would be used for performance evaluations, they would find many cre-
ative ways to influence the metrics collected (e.g., perform a first “informal” review i.e.,
not known by the manager, to detect defects and correct them, then perform the “official”
review where just a few defects would be detected).

(DILBERT: © Scott Adams/Distributed by United Feature Syndicate, Inc.)

After a short discussion, the manager agreed not to access software metrics col-
lected from individual reviews. He agreed that a monthly report listing averages (e.g.,
mean number of defects detected, mean number of hours to correct defects) would meet
his needs as process owner of the software development process. He also agreed, during a
meeting with all software engineers, that he would not access the metrics since he wanted
only to get the big picture about the effectiveness of the review process. After this meet-
ing, the review process was deployed successfully. Hundreds of software reviews have
been conducted since then and the confidentiality of the review metrics have never been
breached.

436 Chapter 10 Measurement

Every staff member wants to look good and therefore would like the measures to
help him look good. When developing a measurement program, think of the behaviors
we want to encourage and the behaviors that we do not want to encourage.

For example, if you measure software productivity in terms of lines of code per
hour, developers will target that goal to meet the objective of productivity. They will
perhaps focus on their own work to the detriment of the team and the project. Worse,
they can find ways to program the same functionality with additional lines of code to
impact the measure.

The Defect Injection and Detection Rate Measurement at the Rolls-Royce
Company

The Rolls-Royce Company produces aircraft engines. The software development depart-
ment has developed a methodology to estimate the rate of injection of defects and the
defect detection rate for each of its developers. While the best organizations reach a level
of quality of one defect per 1000 lines of code, Rolls-Royce achieved a level of 0.03
defects per 1000 lines of code.

The many measures taken in their development process allow them to estimate the
rate of injection and detection of each developer. The results of measuring the effective-
ness of developers have shown that the difference in injection fault defect rates between
the best and worst varies by one order of magnitude, that is, the best developer produces
an average of 0.5 defects per 1000 lines of code, while the worst produces 18 defects per
1000 lines of code.

Another study showed a factor of 10 in defect detection efficiency, even if all devel-
opers use exactly the same process and exactly the same checklists.

Adapted from Nolan et al. (2015) [NOL 15]

There is only one way to avoid this behavior and it is to focus measurement on
processes and products instead. Here are some suggestions to promote the implemen-
tation of effective measures (adapted from [WES 05]):

– once measures are collected, they should be used to make decisions. One
sure way to undermine the measurement program is to accumulate them in
a database and ignore them for decision making;

– given that software development is an intellectual task, it is recommended to
develop a set of measures to fully capture the complexity of the task. As a
minimum, quality, productivity and project schedule should be measured;

– to gain developer commitment to this program, they must have a sense of
belonging (ownership). Participation in the definition, collection, and analy-
sis of the measures will improve this sense of belonging. People working with

10.11 The Human Side of Measurement 437

a process on a daily basis have an intimate knowledge of this process. They can
help suggest ways to better measure the process, ensure the accuracy of valid
measurements and propose ways to interpret the results to maximize their util-
ity;

– provide regular feedback to the team about the data collected;

– focus on the need to collect data (when team members see the data actually
used, they are more likely to view the collection activity as important);

– if team members are kept informed of how the measures are used, they are less
likely to become suspicious of the measurement program;

– benefit from the knowledge and experiences of team members by involving
them in the analysis of data for process improvement efforts.

At Siemens, over 50% of sales were based on products or systems that included software
and more than 27,000 software engineers were employed all over the world (about 10%
of employees). Some very large projects involved 2,000 developers in 13 countries.

For the engineering business unit of Siemens, objectives were established and
issues that needed to be addressed were defined according to Basili’s Goal-Question-
Measurement (Goal-Question-Metric) approach [BAS 10]. For example:

– Objective: Reduced turnaround time
◦ Question: How was productivity affected?
◦ Question: Is quality the same as before?

– Objective: Increase quality
◦ Question: Has customer satisfaction been affected?

– Goal: Improving process maturity
◦ Question: Have measurements had a significant effect on productivity or quality?

– Objective: Introduction of new technologies
◦ Question: Has a significant reduction in development time been observed?

For this business unit, Siemens has implemented a set of six measures: customer
satisfaction, quality, development cycle, productivity, the maturity of its processes, and
the maturity of its technology as tools.

Adapted from Geck et al. (1998) [GEC 98]

An anecdote about the invention of the inspection method by Fagan while he
was working at IBM [BRO 02] was presented earlier in the chapter on reviews. In the
following text box, we continue this story with a brief description of the difficulties
he encountered.

438 Chapter 10 Measurement

The History of the Inspection Process at IBM

Upon his arrival as head of a software development department, Fagan notes that devel-
opment was chaotic. There were no appropriate measures that allowed one to understand
what was going on or how to do better. There was pressure to reduce the number of defects
that were delivered to customers. Estimates of the percentage of rework ranged from 30%
to 80%. The two most obvious ways to solve these problems were to reduce the number of
defects injected during development, as well as finding and fixing those that were injected
as close to their originating point in the process as possible.

The atmosphere at that time was not conducive to improvement. We had to “deliver
this functionality now!” They developed software with a brute force approach, intellectual
of course, but with heroic efforts. Today, we would call this an SEI level 1 organization.

One of the first actions taken was the establishment of measurable output criteria for
all key activities of the development process. Fagan had decided to develop and implement
a new review method, called inspection, to detect early design errors before coding. These
reviews helped reduce rework significantly. In addition, inspections did not delay delivery
and customers noticed an improvement in the quality of products they received.

Since he was a manager and that he felt his duty was to provide high quality software
on time and within budget, Fagan had taken the liberty and the risk of implementing an
inspection process for source code as well. In the early years of inspections, even with
results that seemed convincing, Fagan faced derision and exasperation, but very little
acceptance from his peers. He did not receive much support—in fact, he was ridiculed. He
was often asked to stop this “nonsense” and refocus on project management as everyone
else did.

Even when those who had no interest in the methodology confirmed how inspections
had helped them, others were still reluctant to try it. Resistance to change was an obstacle
to the spread of the use of inspections.

After the inspection process had proved, beyond a shadow of a doubt, to be an effec-
tive way to reduce defects and improve product quality and productivity, IBM asked him
to deploy this process in its other divisions. Again, Fagan had to convince non-believers
and change their work habits in software development.

Having saved the company millions of dollars, Fagan was awarded the largest single
prize ever awarded by IBM.

Adapted from Broy and Denert (2002) [BRO 02]

10.11.1 Cost of Measurement

Obtaining precise, complete, and analyzed measures add a non-negligible cost to
the IT budget. For example, a measurement program for software products can cost
between 2% and 3% of a project’s budget. According to Grady (1992) [GRA 92],
organizations that use measurement obtain a competitive edge compared to their

10.12 Measurement and the IEEE 730 SQAP 439

competitors who do not. Alternatively, the cost associated with not having any mea-
sures can be seen by all of the software projects that fail to meet their budget, sched-
ule, and quality objectives. Those with measures have the advantage of making sound
decisions that will allow them to obtain greater customer satisfaction.

Lessons learned from an Improvement Activity led over a
Number of Years in an Organization in the Defense Industry

Collect Data to Document Improvements

Given the investment in process improvement, it becomes important to demonstrate the
benefits. It is recommended that quantitative and qualitative data be collected before and
during the process improvement activity so as to be used later to measure progress. Project
data such as initial and final budgets, initial and final schedule, planned versus actual
quality and the customer level should be collected.

Evaluate Work Groups

From time to time, the members of a work group evaluated their effectiveness. A ques-
tionnaire [ALE 91] was distributed at the end of a meeting. Members filled out the ques-
tionnaire individually and sent their answers to the work group animator. Consequently,
even the shyest member could reveal his thoughts about the group dynamics. The ques-
tionnaire addressed the following topics: goals and objectives, use of resources, level of
confidence between participants, conflict resolution, leadership, control and procedures,
interpersonal communications, problem resolution, experimentation and creativity. For
example, the following question addressed leadership:

Leadership

One individual dominates the scene.
Leadership functions are neither
undertaken nor shared.

There is total leadership
participation. Members share
leadership functions.

1 2 3 4 5 6 7

For each question, survey participants answer on a scale from 1 to 7. Difficulties
highlighted by the team members were considered to propose improvements.

Laporte and Trudel (1998) [LAP 98]

10.12 MEASUREMENT AND THE IEEE 730 SQAP

Measurement, described in the IEEE 730 standard, is helpful in demonstrating
that the software processes can and do produce software products that conform to

440 Chapter 10 Measurement

requirements. This confirmation includes evaluating intermediate and final soft-
ware products along with methods, practices, and workmanship. Evaluation further
includes measurement and analysis of a software process as well as product problems
and related causes and provides recommendations about ways to correct current prob-
lems. IEEE 730 also explains that the measurement activities and tasks can supply
objective data to improve an organization’s life cycle management process. Similarly,
evaluating software products for compliance can identify improvement opportunities.

This standard provides a number of questions that the project team should use
during planning and execution in order to ensure its conformity to the measurement
requirements. For example, [IEE 14]:

– Are requirements specific, measureable, attainable, realistic, and testable?

– Have the information needs required to measure the effectiveness of technical
and management processes been identified?

– Has an appropriate set of measures, driven by the information needs, been iden-
tified and developed?

– Have appropriate measurement activities been identified and planned?

– Is the review process of the project measured and effective?

– Have all corrective actions that were implemented proven to be effective as
determined by effectiveness measures?

– Have the measurement process and specific measures been evaluated?

– Have improvements been communicated to the measurement process owner?

Of the 16 SQA activities recommended by this standard, activity 5.4.6 describes
the measurement of software products while activity 5.5.5 describes the recom-
mended process measurement of a software project.

10.12.1 Software Process Measurement

Effective SQA processes identify what activities to do, how to confirm the activities
are performed, how to measure and track the processes, how to learn from measures
to manage and improve the processes, and how to encourage using the processes to
produce software products that conform to established requirements. SQA processes
are continually improved based on objective measures and actual project results. Dur-
ing SQA planning, the project team will define specific measurements for assessing
project software quality and the project performance against project and organization
quality management objectives. The following activities are recommended [IEE 14]:

1) Identify applicable process requirements that may affect the selection of a
software life cycle process.

2) Determine whether the defined software life cycle processes selected by the
project team are appropriate, given the product risk.

10.12 Measurement and the IEEE 730 SQAP 441

3) Review project plans and determine whether plans are appropriate to meet
the contract based on the chosen software life cycle processes and relevant
contractual obligations.

4) Audit software development activities periodically to determine consistency
with defined software life cycle processes.

5) Audit the project team periodically to determine conformance to defined
project plans.

6) Perform Task 1 through Task 5 above for subcontractor’s software develop-
ment life cycle.

Performing these activities should provide the following outcomes [IEE 14]:

– Documented software life cycle processes and plans are evaluated for confor-
mance to the established process requirements.

– Project life cycle processes and plans conform to the established process
requirements.

– Non-conformances are raised when software life cycle processes and plans do
not conform to the established process requirements.

– Non-conformances are raised when software life cycle processes and plans are
not adequate, efficient, or effective.

– Non-conformances are raised when execution of project activities does not
conform to software life cycle processes and plans.

– Subcontractor software life cycle processes and plans conform to the process
requirements passed down from the acquirer.

10.12.2 Software Product Measurement

Measurement, from a product perspective, determines whether product measure-
ments demonstrate the quality of the products and conform to standards and pro-
cedures established by the project. This is even more important when a supplier is
involved. Prior to delivery, determine the degree of confidence the supplier has that
the established requirements are satisfied and that the software products and related
documentation will be acceptable to the acquirer. The project will then collect mea-
surement data sufficient to support these satisfaction and acceptability decisions. A
contract may demand that the acquirer, prior to delivery, determine whether software
products are acceptable. The following activities are recommended [IEE 14]:

1) Identify the standards and procedures established by the project or organiza-
tion.

2) Determine whether proposed product measurements are consistent with stan-
dards and procedures established by the project.

442 Chapter 10 Measurement

3) Determine whether the proposed product measurements are representative of
product quality attributes.

4) Analyze product measurement results to identify gaps and recommend
improvements to close gaps between measurements and expectations.

5) Evaluate product measurement results to determine whether improvements
implemented as a result of product quality measurements are effective.

6) Analyze product measurement procedures to confirm they are sufficient to
satisfy the measurement requirements defined in the project’s processes and
plans.

7) Perform Task 1 through Task 6 above for software products developed by all
subcontractors.

Performing these activities should provide the following outcomes [IEE 14]:

– Software product measurements conform to the project’s processes and plans,
and conform to standards and procedures established by the project or organi-
zation.

– Software product measurements accurately represent software product quality.

– Software product measurements are shared with project stakeholders.

– Software product measurements are performed on software products devel-
oped by the supplier as well as all of the supplier’s subcontractors.

– Software product measurements are presented to management for review and
potential corrective and preventive action.

– Non-conformances are raised when required measurement activities are not
performed as defined in project plans.

Finally, IEEE 730 refers to the ISO 15939 measurement recommendations,
presented in section 10.5, as measurement recommendations to be implemented in
a SQAP.

Tips Concerning Measurement

– start small; identify major issues and select only a few measures, for example, five to
seven measures;

– be aware that measurement can be threatening for many people. Ensure that the staff
understands why we measure, what will be measured, how it will be done and what the
measures will be used for;

– ensure that the measurement process is effective and does not hinder personnel’s current
work;

10.14 Further Reading 443

– make measurement results accessible and visible;

– use measurement to make decisions;

– communicate clearly to what purpose measurements will and will not be used.

10.13 SUCCESS FACTORS

Following are the factors that help or adversely affect software quality in an organi-
zation.

Factors that Foster Software Quality

1) A measurement program that supports business objectives.

2) Measures used to improve processes and the products of the organization.

3) Developers that are involved in the planning and implementation of the measurement
program.

4) Results of measurement analysis are communicated to developers.

5) Project managers use measures to make decisions.

Factors that may Adversely Affect Software Quality

1) Measures are used to assess the performance of developers.

2) Measures are used to negatively motivate personnel (as a stick).

3) Confidential data are revealed.

4) Data are badly interpreted.

5) Process measures are not documented.

6) Data collected are not used.

7) Data are not communicated to those who are affected by the measurement.

8) Ignoring the cultural and human aspects of measurement.

9) Measurement is perceived as an overhead that can be cut when the schedule is tight
or budgets are overspent.

10.14 FURTHER READING

Florac W. A. and Carleton A. D. Measuring the Software Process, Addison-Wesley,
Boston, MA, 1999.

Humphrey W. S. Managing the Software Process, Addison-Wesley, Boston, MA, 1989.

444 Chapter 10 Measurement

Iisakka J. and Tervonen I. The darker side of inspection. In: First Workshop on Inspection
in Software Engineering (WISE’01), Paris, July 2001.

Weinberg G. M. Quality Software Management, Volume 2: First Order Measurement.
Dorset House, New York, 1993.

10.15 EXERCISES

10.1 You need to measure the size of a software. Before programming a measurement tool,
you will need to specify what will and what will not be measured for a specific pro-
gramming language. Choose a programming language and write the specifications for
this measurement tool.

10.2 In the same organization, many software have been developed using different program-
ming languages. You have access to size, effort, and quality measures (e.g., the number
of defects). How will you proceed to compare the productivity and the quality of these
software?

10.3 List criteria that would allow you to choose measures for a specific project.

10.4 What are the principal questions that a project manager should ask and for which a
good measurement program will provide answers?

10.5 Write the task description to hire someone that will be responsible for the measurement
analysis for your organization.

Chapter 11

Risk Management

After completing this chapter, you will be able to:

– understand risk management;

– know the main standards and models that include requirements for risk man-
agement;

– understand the risks that can affect the quality of a software;

– understand the techniques used to identify, prioritize, document, and mitigate
risks;

– understand the roles of participants in risk management;

– understand the human factors involved in risk management;

– understand how to conduct risk management for very small entities;

– recognize the requirements for risk management in a software quality assur-
ance plan.

11.1 INTRODUCTION

Software engineers and project managers are eternal optimists. When planning a
project, they often assume that everything will go as planned. Reality is very dif-
ferent as every software project includes risks. Risk management is recognized as a
proven practice in the software industry. According to Charrette (1992) [CHA 99],
many software professionals have the wrong perception of risk management. They
see it as a necessary but uninteresting task to be done before the really interesting
coding work begins. It is perceived as over management or as another bureaucratic
activity that prevents the organization from achieving its objectives.

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

445

446 Chapter 11 Risk Management

“Risk, in and of itself, is not bad. Risk is essential to progress. Failure is often a key
element of learning. We need to learn to balance the negative consequences of risk with
the potential advantages associated with an opportunity.”

Van Scoy (1992) [VAN 92]

In some organizational cultures, those that raise the flag to indicate a new risk
are often perceived as negative or as trouble makers. Management will often react by
attacking these individuals instead of attacking the risks highlighted. These organi-
zations are often in reactive mode. When a risk becomes a real problem, they try to
mitigate it and then manage it by adding personnel to a project that is already late, for
example. When these strategies fail, the organization goes into crisis management.
Now it needs to put out fires.

“With risk management, the focus is moved from crisis management to anticipatory
management.”

Down et al. (1994) [DOW 94]

There is a large number of sources of risk that are both external and internal to a
software project. Figure 11.1 illustrates some of these sources.

With the growing complexity of software and the demand for even better, bigger,
and more performing software, the industry is now becoming a high risk endeavor.
When software development project teams do not manage their risks, they become
vulnerable to major rework, additional costs, late delivery, or simply project failure.

Figure 11.2 illustrates the context within which software is developed. Risk man-
agement, as presented in this chapter, covers project management, that is, the risks
related to the developed processes and products, although the organizational context
can also present risks.

At the beginning of a software project, there are things that you know,
things that you know you do not know (but that you need to understand) and
unknown–unknowns, which are things that you do not know at all. The ones that
you should worry about are the unknown–unknowns. These are the items that come
as surprises and are unpredictable. Risk management as presented in this chapter,
aims at managing the first two types of unknowns listed above. With respect to the

11.1 Introduction 447

Changing
requirements

Macro-management

Team work

Schedule

Integration

Personnel

Techniques

Communication

Costs

Policy
changes

Clients

Employees

Budget

Legislation

Micro-management

Economy
Acts of God

Changes
in scope

Standards

Suppliers

Figure 11.1 Some software project internal and external risk sources.
Source: Adapted from Shepehrd (1997) [SHE 97].

Business
environment

Organizational
environment

Software project

Competitor

Competitor

Software
application

Software
application

Software
application

Process
risks

Product
risks

Figure 11.2 Software projects—many surrounding contexts [CHA 99].

unknown–unknowns, you will become quicker at identifying them with experience
and through the use of risk management over a number of years.

The following text box describes some of the definitions of risk.

Risk

Effect of uncertainty.

Note 1: An effect is a deviation from the expected - positive or negative.

Note 2: Uncertainty is the state, even partial, of deficiency of information related to
understanding or knowledge of an event, its consequence, or likelihood.

448 Chapter 11 Risk Management

Note 3: Risk is often characterized by reference to potential events and conse-
quences, or a combination of these.

Note 4: Risk is often expressed in terms of a combination of the consequences of an
event (including changes in circumstances) and the associated likelihood of occur-
rence.

Note 5: The word “risk” is sometimes used when there is the possibility of only
negative consequences.

Note 6: This constitutes one of the common terms and core definitions for ISO man-
agement system.

ISO 9000
An uncertain event or condition that, if it occurs, has a positive or negative effect on

one or more project objectives.
PMBOK® Guide [PMI 13]

The combination of the probability of an event and its consequence.
ISO/IEC/IEEE 16085 [ISO 06a]

For the PMI, the risk management objectives of a project are: to augment the
probability and the impact of positive events as well as reduce the probability and
impact of negative events in the project [PMI 13]. In this chapter, we use a more
widely accepted definition of risk, which is more pessimistic.

Risk management allows for raising the awareness of a doubt before it becomes
a crisis. This technique improves the chances of successfully completing the project
and reduces the impact of risks that cannot be avoided. Effective risk analysis and its
management, for a given project, helps in identifying the hypothesis, constraints, and
objectives that may change for the worse.

Boehm states four good reasons to use software risk management techniques
(adapted from Boehm (1989) [BOE 89]):

– avoid catastrophic events in software projects, including budget and schedule
overruns, defective software products and production failure;

– avoid rework caused by requirements, by design or by source code that is
wrong, missing or ambiguous which generally accounts for 40–50% of the
total cost of software development;

– avoid overkill by using detection and prevention techniques when the risk is
minimal or non-existent;

– encourage a win–win software solution where the customer gets the product
he needs and the supplier receives the expected benefits.

Figure 11.3 illustrates the typical progress of a project. We see that, in the early analy-
sis phase, a very small part of the budget is spent. On the other hand, a large proportion
of the budget is already committed before this phase is even completed. This situation
raises the risk profile of the project as there may be budget overruns.

11.1 Introduction 449

100 %

Study Implementation Operation Removal

40 %

10 %4 %1 %

% of project budget

60 %

40 %

80 %

100 %

0 %

20 %

% of budget committed

70 %

85 %

% of budget spent

Figure 11.3 Typical expense curve of a project [FOR 05].

We cannot only be involved with low risk projects. A risk represents a compet-
itive advantage or a deciding factor. Since every software project is unique, there is
no miracle recipe for a development project where some, often unpleasant, surprises
occur. By definition, a software development project always includes some risks. The
saying “forewarned is forearmed” applies perfectly to risk management. It is better
to be proactive than reactive with respect to software development.

Risk management is only one of the elements of the project decision process in
an organization. Risk can appear at software, system, or organizational levels. These
three risk management levels are intimately linked. To fully understand these links,
it is necessary to identify what is valued in the organization or the project. For exam-
ple, is innovation and risk taking well regarded or frowned upon? The organizational
culture will impact the tolerance for risk in software projects.

The second issue to clarify and take into account is the risk management process
itself. It needs to be documented, known, reproducible, measurable, deployed, and
used.

Behaviors should also be considered. For example, is the organization’s commu-
nication about risks open and honest? When there is a risky situation in the project,
we need to think about what we want the project team members to do or not to do.
What would you like the individuals to do when they are faced with a risky situation
or when faced with a situation they feel they may fail?

Professor Laporte was consulting at an organization in the public sector. During an infor-
mal discussion with a project manager, he stated that “in this company, you cannot make

450 Chapter 11 Risk Management

a mistake.” A few weeks later, a member of the executive team approved a very important
project at a meeting and assigned the same project manager. The meeting was to continue
after lunch.

When the meeting reconvened, the project manager was no longer present. At the
end of the day, we heard that the project manager would be on sick leave due to burn-out.

It is clear that senior management of that organization had a low tolerance for error.
Unfortunately, managers and employees of the organization quickly learned not to take
risks, to cover up mistakes or to blame someone else. Such an organizational culture
does not invite anyone to innovate or to look for opportunities to increase quality and
productivity!

Interestingly, risk management may seem easy to do at first. In practice it can
become a complex process, because risks are not tangible, only the resulting prob-
lems are. Risks are potential problems. When you try to lower their probability or
consequences, the question is: will the investment in managing this risk improve the
chance of success for the project?

Most project risks are a combination of political, social, economic, environmen-
tal, and technical factors. It can be difficult to isolate the factors and quantify the risk
when they depend on individual perceptions. Given that risk is generally perceived,
its estimation and probability is also generally perceived and can be biased. In organi-
zations that have been managing risk for a long time, information accumulated from
many software projects allow managers to anticipate and manage risk better with the
use of quantitative measures.

Other difficulties may arise due to the varying levels of tolerance to risk from
different stakeholders (e.g., marketing team, development team, or the client). For
example, a lending agent in a bank and a professional sports player have different
tolerance levels depending on the requirements of their profession. If they exchange
jobs they will have to adapt their levels of tolerance to risk.

The three main risk factors in software development are (adapted from Charette
(2006) [CHA 06]):

– an unrealistic attitude: in the software industry, it is common to make promises
and under estimate effort. Unrealistic objectives are especially observed in
complex projects;

– lack of discipline: we note, with regards to the CMMI, that the majority of soft-
ware organizations are not disciplined or use deficient development practices,
such as a bad project management approach that will destroy the project faster
than any other risk factor, apart from unrealistic attitudes;

– political games: some projects are not planned or executed in a completely
objective or rational way. They are part of other, more organizational, political
issues. Most software project managers have difficulty managing these situa-
tions, as well as understanding their influence on the success of the project.

11.1 Introduction 451

Professor Laporte had a mandate in an organization where he witnessed political
games.

At that time, the organization did not have a tool to perform configuration man-
agement activities. The organization’s configuration management expert had proposed
to senior management to assess the tools available in the market so that the organization
could rapidly acquire and deploy the tool and use it in their daily activities. To his surprise,
senior management opted for the development of such a tool by the internal IT division.
The CM expert estimated that it would take at least 2 years of work, by the internal IT
team, to develop and deploy a tool with a minimal set of features. In addition, the orga-
nization would have to invest IT resources to maintain the tool, resources that could not
be used for important activities of the organization.

Hallway conversations helped to understand the politics that led to this decision.
Without this development project, the director of the IT division would have had to reduce
the size of his division. The Director of Engineering had to return a favor to the IT man-
ager. At the meeting, during which the decision was taken to develop internally, the engi-
neering manager voted to develop the CM tool internally.

After over a year of development, the organization decided to buy a commercial
tool!

Risk management is a good tool to continuously review the feasibility of project
plans, identify and resolve problems that could impact the life cycle processes of
the project, product quality, and performance with the objective of improving project
management processes.

Software development risk management does not guarantee project success or
the total absence of risks. It does not relieve stakeholders of their social, moral, finan-
cial, or legal obligations.

Figure 11.4 outlines the SWEBOK body of knowledge for software manage-
ment. Among the major categories, risk management is highlighted in the left hand
side of the diagram.

11.1.1 Risk, the Cost of Quality and Business Models

The importance of software business models and the cost of quality have already been
discussed. In regards to the cost of quality, risk is considered as an element of preven-
tion costs, that is, the costs incurred by an organization to prevent defects in different
phases of its software life cycle. With respect to risk management, prevention costs
are identification costs, along with the analysis and execution of risk mitigation mea-
sures. Table 11.1 describes the different prevention elements.

452 Chapter 11 Risk Management

Software
engineering
management

Software
engineering
management

tools

Software
engineering

measurement

Initiation and
scope definition

Determination
and negotiation
of requirements

Determining
satisfaction of
requirements

Determining
closure

Establish and
sustain
measurement
commitment

Plan the
measurement
process

Perform the
measurement
process

Evaluate
measurement

Closure
activities

Reviewing and
evaluating
performance

Feasibility
analysis

Process planning
Implementation
of plans

Software
acquisition and
supplier contract
management

Implementation
of measurement
process

Monitor process

Control process

Reporting

Determine
deliverables

Effort, schedule,
and cost
estimation

Resource
allocation

Risk management

Quality
management

Plan management

Process for the
review and
revision of
requirements

Software project
planning

Software project
enactment

Review and
evaluation

Closure

Figure 11.4 Risk management in the SWEBOK [SWE 14].

Table 11.1 Risk Management Prevention Costs

Major category Sub categories Definition
Typical elementary
costs

Prevention costs Establish quality
fundamentals

Efforts to define
quality, set quality
objectives,
standards and
checklists.
Analysis of
compromises
linked to quality.

Definition of success
criteria, acceptance
tests and quality
standards.

Interventions oriented
toward projects and
processes

Efforts dedicated to
prevent bad quality
and improve the
quality of the
process/project.

Training for process
improvement,
measurement and
analysis. Risk
identification,
analysis, and
mitigation.

Source: Adapted from Krasner (1998) [KRA 98].

11.1 Introduction 453

Risks are at the foundation of all the business models. Software development
practices should be chosen in response to the inherent risks of each model. To
minimize losses and errors, developers must make a careful selection of soft-
ware quality assurance (SQA), verification and validation, and risk management
practices.

11.1.2 Costs and Benefits of Risk Management

The costs and benefits of risk management can vary greatly: from not managing risks
at all to controlling all the project risks. The objective is to strike a balance where risk
is minimized at an optimum cost.

All new approaches, like implementing risk management for the first time, will
require an initial investment to document the activities of this process, training per-
sonnel, and ramping up its use in all projects. The most important investments are
made when projects apply the process for mitigating the probability and conse-
quences of risk, for example, with the development of a prototype to better understand
the customer requirements or with the additional hiring of an external consultant to
conduct a feasibility study.

Risk management offers a structured mechanism to give better visibility to
threats perceived by the project team. It also allows for the quantifying of the sched-
ule slippage if some risks materialize. Project performance becomes more predictable
and project reviews are more effective. It helps the project manager to plan a contin-
gency budget (e.g., in money and time) to avoid errors made in the past (e.g., over-
confidence). Risk management activities should start with the request for information,
before an acquisition project is initiated. This technique can also be used to assess the
capability of a supplier to deliver a critical component, on time and at the quality level
specified.

The advantages associated with the effective use of risk management in projects
are [ISO 17 and SEI 10a]:

– a defined and executed risk management strategy;

– potential problems, that is, risks that could influence the success of the project
are identified;

– the probability of risk and their consequences are understood;

– risks are ranked by priority highlighting those that will be tracked closely;

– appropriate mitigation solutions are developed proactively, taking into
account the project context, diminishing crisis situations where risks become
problems;

– mitigation solutions are chosen for risks that have surpassed threshold limits;

– project risk information is captured, analyzed, and exploited with the objective
of improving the risk management procedures and policies.

454 Chapter 11 Risk Management

11.2 RISK MANAGEMENT ACCORDING TO
STANDARDS AND MODELS

This section briefly presents the standards and models that describe risk management
requirements. First, we present the requirements of ISO 9001. Then we discuss
the ISO/IEC/IEEE 12207 that describes all the life cycle processes including
the recommended risk management process. Next, a section is dedicated to the
ISO/IEC/IEEE 16085 standard [ISO 06a]. Risk management is also covered by the
CMMI. Given that software development is almost always associated with a project,
the point of view of the PMBOK® Guide of the Project Management Institute
(PMI) is presented. The following section presents a discussion on how to apply risk
management to very small entities using the ISO 29110. Finally, the requirements
for risk management included in a SQA plan are described.

“If you do not have time to mitigate the risk now, it is certain that you will make the time
to resolve the problem later, when it arises.”

11.2.1 Risk Management According to ISO 9001

It is important to point out that ISO 9001 uses a risk-based thinking approach, among
others [ISO 15]. A risk-based approach allows the organization to identify factors that
may create a gap between its processes and its quality management system (QMS)
and the expected results. It also allows for the implementation of a preventive process
to limit any negative effects and to capitalize on improvement opportunities.

Clause 6.1 describes the actions to address risks and opportunities, the quality
objectives of the QMS and their achievement, and modifications to the QMS. It has
a number of requirements that are listed in the next text box.

6.1.1 When planning for the quality management system, the organization shall consider
the issues referred to in 4.1 and the requirements referred to in 4.2 and determine the risks
and opportunities that need to be addressed to:

– give assurance that the quality management system can achieve its intended result(s);

– enhance desirable effects;

– prevent, or reduce, undesired effects;

– achieve improvement.

11.2 Risk Management According to Standards and Models 455

6.1.2 The organization shall plan:

– actions to address these risks and opportunities;

– how to:
◦ integrate and implement the actions into its quality management system processes;
◦ evaluate the effectiveness of these actions.

Actions taken to address risks and opportunities shall be proportionate to the poten-
tial impact on the conformity of products and services.

Note 1: Options to address risks can include avoiding risk, taking risk in order to pur-
sue an opportunity, eliminating the risk source, changing the likelihood or consequences,
sharing the risk, or retaining risk by informed decision.

Note 2: Opportunities can lead to the adoption of new practices, launching new prod-
ucts, opening new markets, addressing new customers, building partnerships, using new
technology and other desirable and viable possibilities to address the organization’s or its
customers’ needs.

11.2.2 Risk Management According to
ISO/IEC/IEEE 12207

The purpose of the risk management process, according to the ISO 12207 [ISO 17]
standard, is to identify, analyze, treat, and monitor the risks continually. The risk man-
agement process should be a continuous process for systematically addressing risk
throughout the life cycle of a system, software product, or service. It can be applied to
risks related to the acquisition, development, maintenance, or operation of a system.

As a result of the successful implementation of the risk management process
[ISO 17]:

– risks are identified;

– risks are analyzed;

– risk treatment options are identified, prioritized, and selected;

– appropriate treatment is implemented;

– risks are evaluated to assess changes in status and progress in treatment.

11.2.2.1 Activities and Tasks of the Risk Management Process

In accordance with the policies and procedures of the organization concerning risk
management, the project shall implement the following activities [ISO 17]:

– plan risk management;

– manage the risk profile;

– analyze risk;

– treat risk;

– monitor risk.

456 Chapter 11 Risk Management

11.2.3 Risk Management According to
ISO/IEC/IEEE 16085

Risk management according to the ISO 16085 [ISO 06a] standard supports the acqui-
sition, supply, development, operation, and maintenance of products and services by
providing a series of process requirements that can address a wide variety of risks.
The purpose of this standard is to provide suppliers, acquirers, developers, and man-
agers with a single set of process requirements suitable for the management of a broad
variety of risks [ISO 06a].

This standard does not describe risk management techniques. It defines a risk
management process that can be used with many different techniques. The use of
this standard does not require a specific life cycle process. The measurement process,
described within ISO 15939 [ISO 17c] and described in an earlier chapter, works
closely with the risk management activities described in the ISO 16085 standard to
both identify and quantify risks.

Risk Management Process

A continuous process for systematically identifying, analyzing, treating, and monitoring
risk throughout the life cycle of a product or service.

Risk Management Plan

A description of how the elements and resources of the risk management process will be
implemented within an organization or project.

ISO/IEC/IEEE 16085 [ISO 06a]

The ISO 16085 risk management process, as illustrated in Figure 11.5, is con-
tinuously executed during all the activities of the life cycle of the product. It is rec-
ommended that this process include the following activities [ISO 06a]:

– plan and implement risk management;

– manage the project risk profile;

– perform risk analysis;

– perform risk monitoring;

– perform risk treatment;

– evaluate the risk management process.

The risk management process is initiated using the information requested by
the stakeholders of the technical and management process of an organization (see

11.2 Risk Management According to Standards and Models 457

Perform risk analysis

Plan and implement
risk management

Manage the
project risk profile

Perform risk monitoring

Evaluate the
risk management

process

Technical and
management
processes

Perform
risk

treatment

Improvements

Project risk profile

Information needs

Management decision

Feedback

Project risk profile and
risk mitigation demands

1

5

2

3

4

6

7

Figure 11.5 ISO 16085 recommended risk management process [ISO 06a].
Source: Standards Council of Canada.

rectangle number 1 of Figure 11.5) to make decisions that include risks. The risk
management process activities are [ISO 06a]:

– during the execution of the activity entitled “Plan and implement risk manage-
ment” (rectangle number 2 of Figure 11.5), the policies regarding the general
guidelines under which risk management will be conducted, the procedure to
be used, the specific techniques to be applied, and other matters relevant to
risk planning are defined. The risk management plan (RMP) can include the
following topics:
◦ overview;
◦ scope;
◦ reference documents;
◦ glossary;
◦ risk management overview: describe the specifics of risk management for

this project or organization’s situation;
◦ risk management policies: describe the guidelines by which risk management

will be conducted;
◦ risk management process overview;
◦ risk management responsibilities: define the parties responsible for perform-

ing risk management;

458 Chapter 11 Risk Management

◦ risk management organization: describe the function or organization
assigned responsibility for risk management within the organizational unit;

◦ risk management orientation and training;
◦ risk management costs and schedules;
◦ risk management process description;
◦ risk management process evaluation;
◦ risk communication: describe how risk management information will be

coordinated and communicated among stakeholders and interested parties
(i.e., those who are interested in the performance or success of the project
or product but not necessarily of the organization) such as what risks need
reporting to which management level;

◦ RMP change procedures and history.

Risk State

The current project risk information relating to an individual risk.
Note: The information concerning an individual risk may include the current descrip-

tion, causes, probability, consequences, estimation scales, confidence of the estimates,
treatment, threshold, and an estimate of when the risk will reach its threshold.

Risk Profile

A chronological record of a risk’s current and historical risk state information.

Risk Threshold

A condition that triggers some stakeholder action.
Note: Different risk thresholds may be defined for each risk, risk category or com-

bination of risks based upon differing risk criteria.

Risk Treatment

The process of selection and implementation of measures to modify risk.
Note:

– The term “risk treatment” is sometimes used for the measures themselves.

– Risk treatment measures can include avoiding, optimizing, transferring or retaining
risk.

Risk Action Request

The recommended treatment alternatives and supporting information for one or more
risks determined to be above a risk threshold.

ISO 16085 [ISO 06a]

– during the execution of the activity entitled “Manage the project risk profile”
(rectangle number 3 of Figure 11.5), the context of current and historical risk

11.2 Risk Management According to Standards and Models 459

management as well as the risks states are documented. The risk profile of the
overall project is the sum of all the individual risk profiles;

– information on the project risk profile is constantly updated by the “Perform
risk analysis” activity (rectangle number 4 of Figure 11.5) that identifies risks,
determines their probability, lists their consequences, assesses the risk of expo-
sure and prepares the risk action requests for risks that cross their established
thresholds;

– the risk mitigation recommendations, the state of other risks, and their mitiga-
tion proposals are sent to management to be reviewed (rectangle number 5 of
Figure 11.5). Management decides whether to approve that a mitigation of crit-
ical risks should be performed. The mitigation plans are then developed. These
plans will be included in the project management activities to be coordinated
with the other project plans and current activities;

– all the risks are then monitored until they stop posing a threat. For example,
they are removed during the activity entitled “Perform risk monitoring” (rect-
angle number 6 of Figure 11.5). New potential risks are then investigated;

– a periodic assessment of the risk management process is necessary to ensure its
effectiveness. During the activity entitled “Evaluate the risk management pro-
cess” (rectangle number 7 of Figure 11.5), information, such as feedback, is
documented to improve the process or the organizational or project’s capacity
to better manage risks. The improvements identified following a risk assess-
ment are then used by the process entitled “Plan and implement risk manage-
ment” (rectangle number 2 of Figure 11.5).

11.2.4 Risk Management According to the CMMI Model

The CMMI®-DEV contains many process areas that discuss risks. As illustrated in
Figure 4.9, in the staged representation of the CMMI® model, risks are discussed in
two separate process areas of maturity level 2 [SEI 10a]:

– project planning: one of the project planning practices, SP 2.2, is listed as iden-
tifying and analyzing project risks. Four sub-practices are:
◦ identify risks;
◦ document risks;
◦ review and obtain agreement with relevant stakeholders on the completeness

and correctness of documented risks;
◦ revise risks as appropriate.

The typical outputs of these practices are:

◦ identified risks;
◦ risk impacts and probability of occurrence;
◦ risk priorities.

460 Chapter 11 Risk Management

The CMMI model also proposes examples of risk identification and analysis
tools such as: risk taxonomy for determining the source and categories of risks,
checklists, and brainstorming sessions;

– project monitoring and control: an appreciation of the project progress is
obtained allowing corrective actions to be taken when the project performance
diverges significantly from its plan. One of the specific practices, SP 1.3,
discusses the need to monitor the identified risks. Three sub-practices state
that:
◦ periodically review the documentation of risks in the context of the project’s

current status and circumstances;
◦ revise the documentation of risks as additional information becomes avail-

able;
◦ communicate the risk status to relevant stakeholders.

An example work product of this SP is the records of project risk monitoring.

At maturity level 3, the “risk management” process area focuses on the preven-
tion of potential problems before they appear. The purpose of the risk management
process area is to identify potential problems before they occur so that risk han-
dling activities can be planned and invoked as needed across the life of the prod-
uct or project to mitigate adverse impacts on achieving objectives. This process area
includes the following specific objectives and practices [SEI 10a]:

– SG 1 Prepare for risk management
◦ SP 1.1 Determine risk sources and categories
◦ SP 1.2 Define risk parameters
◦ SP 1.3 Establish a risk management strategy

– SG 2 Identify and analyze risks
◦ SP 2.1 Identify risks
◦ SP 2.1 Evaluate, categorize, and prioritize risks

– SG 3 Mitigate risks
◦ SP 3.1 Develop risk mitigation plans
◦ SP 3.2 Implement risk mitigation plans

We can see that at maturity level 2, two of the process areas, that is, project
planning and project monitoring and control, aim at risk identification and mitigation
when they appear, whereas at maturity level 3, the risk management process proposes
practices to ensure a systematic and continuous predictive practice for the planning,
anticipation, and analysis of risk.

CMMI also addresses agile topics [SEI 10a]: some risk activities are already part
of agile methodologies, for example, some technical risks can be addressed by early
experimentation and experimenting early failures or by executing a spike outside
the scope of the current iteration. However, the risk management process suggests

11.2 Risk Management According to Standards and Models 461

a more systematic approach of technical management of risks. Such an approach can
be included in agile iterations and meetings, as well as in iteration planning and task
assignments.

11.2.5 Risk Management According to PMBOK® Guide

The Project Management Body of Knowledge (PMBOK® Guide) of the Project Man-
agement Institute [PMI 13] includes nine knowledge areas and the management of
project risk is one of them.

Project risk, according to the PMBOK® Guide, is an uncertain event or condition
that, if it occurs, has a positive or negative effect on one or more project objectives,
such as schedule, costs, content, or quality (where the schedule objective is to deliver
the product within the agreed upon delay and the cost objective is to deliver the prod-
uct within the agreed upon budget, etc.) [PMI 13].

Figure 11.6, of the PMBOK® Guide, describes the difference between the influ-
ence of the stakeholders’ risks and uncertainties and the costs of modifications as the
project progresses.

The PMBOK® Guide, proposes that risk management includes six processes
[PMI 13]:

1) Plan risk management
– The process of defining how to conduct risk management activities for a

project.

2) Identify risks
– The process of determining which risks may affect the project and docu-

menting their characteristics.

High

Low

Cost of modifications

Risk and uncertainty

Le
ve

l

Time passed

Figure 11.6 Impact of variables as the project progresses [PMI 13].

462 Chapter 11 Risk Management

3) Perform qualitative risk analysis
– The process of prioritizing risks for further analysis or action by assessing

and combining their probability of occurrence and impact.

4) Perform quantitative risk analysis
– The process of numerically analyzing the effect of identified risks on overall

project objectives.

5) Plan risk responses
– The process of developing options and actions to enhance opportunities and

to reduce threats to project objectives.

6) Control risks
– The process of implementing risk response plans, tracking identified risks,

monitoring residual risks, identifying new risks, and evaluating risk process
effectiveness throughout the project.

The Project Management Institute and the IEEE Computer Society published the “Soft-
ware Extension to the PMBOK® Guide Fifth Edition” to complement the PMBOK® by
describing the recognized project management practices that apply to software projects.
In this guide, one chapter of more than 20 pages addresses risk management for software
projects.

11.2.6 Risk Management According to ISO 29110

Very Small Entities (VSEs) manage software project risks “in the small.” For
example, the projects are executed on short schedules and we may not have had the
time to think about risks and the ways to mitigate them. It is therefore necessary
to be alert because we need to react very quickly when a risk emerges and rapidly
becomes a problem because the schedule of the project is short. In these VSEs, the
development teams are very small and when a problem occurs there is often no one
available to address it.

Additionally, the VSE may already be in crisis mode and team members may not
necessarily have the expertise or authority to address a risk. In VSEs, the authority
often resides with the same individual that solves all the problems.

The authors of the VSE standard have included some risk management tasks to
help. The following text describes risk management as presented in the Basic profile.
The Basic profile refers to VSE who develop one project at a time with only one

11.2 Risk Management According to Standards and Models 463

Table 11.2 Risk Management Task During Project Planning [ISO 11e]

Role Task list Input work product Output work product

PM
TL

PM.1.9 Identify and
document the risks
which may affect the
project

All elements
previously defined

Project Plan
– Identification of project

risks

development team. The Intermediate and Advanced Profiles for VSEs require more
involved risk management processes as they develop more than one project at a time
with several teams.

The Basic profile of ISO 29110 [ISO 11e] has selected some of the expected
outcomes from the ISO 12207 [ISO 17]. One objective of the project management
process is “Risks are identified as they develop and during the conduct of the project.”
With these objectives in mind, tasks, roles, inputs, and outputs were described in an
ISO 29110 management and engineering guide [ISO 11e].

Table 11.2 describes the risk management tasks suggested during the project
planning activity of the project. Roles in these activities are: the project manager
(PM), the technical lead (TL), and the work team (WT).

Table 11.3 describes the risk management tasks to be done during the project
implementation.

Table 11.4 presents the three risk management tasks during the monitoring and
control activity of the project (only the elements related to risk management are
listed).

Software work products related to these tasks have also been developed.
Table 11.5 describes the proposed content of the project plan and of progress reports
(only the elements related to risk management are listed).

Table 11.3 Risk Management Task List During Project Implementation [ISO 11e]

Role Task list Input work products Output work product

PM
TL
WT

PM.2.3 Conduct revision
meetings with the work
team, identify problems,
review risk status, record
agreements, and track
them to closure

Project Plan
Progress Status Record
Correction Register
Meeting Record

Meeting Record
[updated]

464 Chapter 11 Risk Management

Table 11.4 Risk Management Tasks List During the Assessment and Control Activity
[ISO 11e]

Role Task list Input work products Output work products

PM
TL
WT

PM.3.1 Evaluate project progress
with respect to the Project Plan,
comparing:
– actual risk against previously

identified

Project Plan
Progress Status

Record

Progress Status
Record [evaluated]

PM
TL
WT

PM.3.2 Establish actions to
correct deviations or problems
and identified risks concerning
the accomplishment of the
plan, as needed, document
them in Correction Register
and track them to closure.

Progress Status
Record [evaluated]

Correction Register

PM
TL
WT

PM.3.3 Identify changes to
requirements and/or Project
Plan to address major
deviations, potential risks or
problems concerning the
accomplishment of the plan,
document them in Change
Request and track them to
closure.

Progress Status
Record [evaluated]

Change Requests
[initiated]

Table 11.5 Proposed Content of the Project Plan and the Progress Status Records [ISO 11e]

Name Description Source

Project Plan Presents how the project processes and
activities will be executed to assure the
project’s successful completion, and the
quality of the deliverable products. It
includes the following elements which
may have characteristics as follows:

– Identification of project risks
The applicable statuses are: verified,

accepted, updated, and reviewed.

Project Management

Progress Status
Record

Records the status of the project against the
project plan. It may have the following
characteristics:

– Status of actual risk against previously
identified

The applicable status is: evaluated

Project Management

11.2 Risk Management According to Standards and Models 465

11.2.7 Risk Management and the SQA According
to IEEE 730

We have already discussed that SQA ensures that processes are established, managed,
maintained, and applied by skilled and qualified staff and that the activities and tasks
performed are commensurate with product risk. Software systems are increasingly
developed to perform tasks that can cause harm to living things, physical structures,
and the environment. A fundamental principle of this standard is to first understand
software product risk and then to ensure that the planned SQA activities are appro-
priate for the product risk. This means that the breadth and depth of SQA activities
defined in the SQA plan are determined by and derived from software product risk.

The risk management descriptions for a project can be documented separately,
as part of the project plan or as a section of the SQA plan. What is important is that it
be present, complete, and available for reviews and audit. Following is a list of issues
that the project manager and the SQA should consider [IEE 14]:

– prepare the SQA plan and identify the SQA activities and tasks for the project
consistent with the software product risks established for the project;

– the SQA function will analyze product risks, standards, and assumptions that
could impact quality and identify specific SQA activities, tasks, and outcomes
that could help determine whether those risks are effectively mitigated;

– analyze the project and adapt the SQA activities to correspond to the risk;

– identify and track project changes that require further SQA planning, including
changes to requirements, resources, schedules, project scope, priorities, and
product risk.

– determine whether the defined software life cycle processes selected by the
project team are appropriate, given the product risks.

For IEEE 730, software product risk refers to the inherent risks associated with
use of the software product (e.g., safety risk, financial risk, security risk). Software
product risk is differentiated from project management risk. Techniques for address-
ing software product risk are discussed in section 4.6.2 of this standard and in Annex
J of this standard [IEE 14]:

– are potential product risks known and well documented?

– are potential product risks understood so that SQA activities can be planned in
a manner appropriate to the product risk?

– has the scope of product risk management to be performed been determined?

– have appropriate product risk management strategies been defined and imple-
mented?

– will a software integrity/criticality level be established, if appropriate?

466 Chapter 11 Risk Management

– does the project team have adequate training in product risk management
techniques?

– is the project team planning to adjust their activities and tasks in a manner
consistent with product risk?

– are the breadth and depth of planned SQA activities proportional to product
risk?

– are risks identified and analyzed as they develop?

– has the priority in which to apply resources to the treatment of these risks been
determined?

– are risk measures appropriately defined, applied, and assessed to determine
changes in the status of risk and the progress of the treatment activities?

– has appropriate treatment been taken to correct or avoid the impact of risk based
on its priority, probability, and consequence or on the defined risk threshold?

– based on product risk, do the project tools, especially those used for the product
SQA, require validation before they can be used on this project?

– have additional project risks appeared that could prevent SQA from accom-
plishing their project responsibilities?

Finally, we would like to note that high risk industries, such as medical devices,
transportation, and nuclear energy have additional risk management recommen-
dations that originate from national monitoring bodies. For example, for medical
devices, risk management is not the same as the risk management defined in IEEE
730. Please refer to these additional guidelines when working within these high risk
industries.

“If you do not actively attack risks, they will actively attack you.”
Gilb (1988) [GIL 88]

11.3 PRACTICAL CONSIDERATIONS FOR
RISK MANAGEMENT

In this section, we discuss a practical risk management approach step by step. This
risk approach has been adapted from Boehm (1991) [BOE 91]. To facilitate its
implementation, we have added a few tools that are easy to use. As illustrated in
Figure 11.7, risk management has two major steps: risk evaluation followed by risk
control. We have added another activity entitled “Lessons learned” for analyzing risks

R
is

k
e

v
a

lu
a

ti
o

n
s

te
p

R
is

k
c

o
n

tr
o

l
s

te
p

R
is

k

id
e

n
ti
fi
c
a

ti
o

n

a
c
ti
v
it
y

R
is

k

a
n

a
ly

s
is

a
c
ti
v
it
y

R
is

k

p
ri
o

ri
ti
z
a

ti
o

n

a
c
ti
v
it
y

L
is

t
o

f
p

o
te

n
ti
a

l
ri
s
k
s

L
is

t
o

f
ri
s
k
s

R
is

k
s
 b

y
 i
m

p
o

rt
a

n
c
e

R
is

k

m
a

n
a

g
e

m
e

n
t

p
la

n
n

in
g

a
c
ti
v
it
y

R
is

k

re
s
o

lu
ti
o

n

a
c
ti
v
it
y

R
is

k

m
o

n
it
o

ri
n

g

a
c
ti
v
it
y

R
is

k
 m

a
n

a
g

e
m

e
n

t

p
la

n

A
tt

e
n

u
a

te
d

 r
is

k
s

A
s
s
e

s
s
e

d
 r

is
k
s

L
e

s
s
o

n
s
 l
e

a
rn

e
d

F
ig

ur
e

11
.7

R
is

k
m

an
ag

em
en

ta
ct

iv
iti

es
.

468 Chapter 11 Risk Management

once the project is completed in order to update the risk process (e.g., checklist) of
the organization.

The risk evaluation step consists of three activities: risk identification, risk anal-
ysis, and risk prioritization. The risk control step consists of three activities: risk plan
development, risk mitigation, and risk monitoring.

The following text describes each activity along with helpful tools for their
implementation.

Risk Management—Questions for a Software Project Manager:

– how do you identify project risks?

– are the risks of the project assessed and prioritized using their probability of occurrence
and their potential impact?

– how do you mitigate a risk?

– how much budget and work days were placed in the risk reserve for your project?

– what risks are considered show-stoppers for a project?

– can you describe the most recent risks of your project?

– what is your mitigation plan for high risks?

– what risks impact the delivery of the software product?

11.3.1 Risk Evaluation Step

The risk evaluation step consists of three activities: risk identification, risk analysis,
and assigning priorities.

11.3.1.1 Risk Identification Activity

Risk identification first produces a list of potential risks that are specific to the project
and are susceptible of compromising its success. To do this, the following tools and
techniques can be used: documentation review, using the organizational risk check-
list, brainstorming with the project team, conducting interviews, strengths and weak-
nesses, opportunities and threats analysis (SWOT), using past experience, project
lessons learned reviews and cause and effect diagrams.

Experienced personnel are often available in an organization. These individuals
are well placed to propose ideas to resolve project problems and identify other poten-
tial problems that the project team did not consider. Table 11.6 describes the most
common software project risks that are reported according to Boehm.

11.3 Practical Considerations for Risk Management 469

Table 11.6 List of Most Common Risks

Risk element Risk management techniques

Personnel shortfall Attract talented personnel (increase salaries),
team training and cross functional training.

Schedules and budgets that are too
optimistic

Estimates made using different techniques,
incremental development, reuse, project
hypothesis analysis (e.g., technology
selected is adequate and available).

Incorrect functionalities and properties
developed

User involvement, prototype, task analysis,
user survey, user guide available early in the
project.

Incorrect user interfaces developed Prototyping, scenarios, task analysis, user
participation.

Gold plating Requirements scrubbing, prototype,
cost-benefit analysis, fixed budget.

High requirements churn and
requirements creep

Incremental development (to push forward
changes to later iterations), stricter control
from the configuration control board.

Defective components originating from
outside the project

Benchmarking, inspection, reference
verification, compatibility analysis.

Shortfalls occurring in the project tasks
outside the project

Reference verification, audit, CMMI
evaluation, award-fee contracts, increase the
contract terms.

Real-time performance problems Simulation, benchmarking, modeling,
prototyping.

Capacities, both human and technical,
pushed to their limits

Prototype, technical analysis, cost-benefit
analysis, technology readiness level
evaluation.

Source: Adapted from Boehm (1991) [BOE 91].

A software project can face different types of risks: technical, management,
financial, personnel, and other resources (adapted from Westfall (2010) [WES 10]):

– technical risks include problems associated with project size, project func-
tionality, platforms, methods, standards, or processes. These risks can origi-
nate from excessive constraints, inexperience, wrongly defined parameters or
dependencies with organizations that are out of the control of the project team;

– management risks include not enough planning, inexperience in management
and training, communications problems, a lack of authority, and financial con-
trol problems;

– contractual risks and judicial risks include changes to requirements, mar-
ket influences, health and safety issues, government regulation, and product
warranty;

470 Chapter 11 Risk Management

– personnel risks include late acquisition of personnel, inexperienced and
untrained personnel, ethical and moral issues, personnel conflicts, and produc-
tivity issues;

– other resources of risks originate from the unavailability or late delivery of
equipment, tools, and environment configurations as well as slow response
time.

NASA has developed a tool, called Technology Readiness Levels (TRLs), to
help assess the risk involved when a project wants to include hardware or software
technology that could pose major technological risks. TRLs have been developed to
assess software risks. The following text box describes the TRLs.

Technology Readiness Assessment

A technology readiness assessment is a formal, systematic, metrics-based process and
accompanying report that assesses the maturity of critical hardware and software tech-
nologies to be used in systems.

A technology readiness assessment is conducted by an independent review team
of subject matter experts that uses Technology Readiness Levels (TRLs) to assess the
maturity of a technology.

The TRL scale ranges from one through nine. The definitions are as follows:

– TRL 1: Basic principles observed and reported;

– TRL 2: Technology concept and/or application formulated;

– TRL 3: Analytical and experimental critical function and/or characteristic proof of con-
cept;

– TRL 4: Component and/or breadboard validation in a laboratory environment;

– TRL 5: Component and/or breadboard validation in a relevant environment;

– TRL 6: System/subsystem model or prototype demonstration in a relevant environment;

– TRL 7: System prototype demonstration in an operational environment;

– TRL 8: Actual system completed and qualified through test and demonstration;

– TRL 9: Actual system proven through successful mission operations.

Department of Defense (2009) [DOD 09]

Many techniques can help with risk identification such as interviews, brainstorm-
ing, decomposition, project assumption analysis, documentation about the unknowns
of a project, critical path analysis, reviewing the risk list generated by end of project
reviews, and using risk taxonomies and checklists. In addition, a proper work envi-
ronment facilitates the communication of risks.

11.3 Practical Considerations for Risk Management 471

Brainstorming

A general data gathering and creativity technique that can be used to identify risks, ideas,
or solutions to issues by using a group of team members or subject matter experts.

PMBOK® Guide [PMI 13]

A risk statement typically includes two parts: the risk condition and its potential
consequences. The condition is a statement of the potential problem that “describes
the main circumstances, the situation generating doubt, anxiety or uncertainty”
[DOR 96]. A consequence is a brief description explaining the potential loss or nega-
tive outcome if this condition appears during the project execution. For example, if the
team does not deliver their components in compliance with the quality level expected
by the customer, there will be a need to raise the effort required, with overtime, for
the next three weeks.

We cannot expect that all the risks will be identified by the project manager. Project par-
ticipants can identify other potential risks. Risk identification should be a team effort.

A simple and easy tool to use for identifying risks is a checklist. The following
list includes typical risks (see the following text box).

Risks Related to Requirements

– no clear vision of the software product to develop;

– insufficient participation of customers during requirements gathering;

– disagreement concerning the software product requirements;

– requirements are not prioritized;

– a new market where requirements are unclear;

– rapid change in requirements;

– no requirements change management process;

– insufficient impact analysis of a requirements change.

472 Chapter 11 Risk Management

Management Related Risks

– weak estimate of the software product size;

– poor task planning;

– lack of visibility of project progress;

– weak engagement toward project objectives;

– unrealistic expectations from the customer or management;

– personality conflicts between team members.

Once risks are identified, the next step is to document them. Table 11.7 provides
an example of a risk documentation grid. The column on the left is entitled “Risk
identification number” and is a number assigned to each risk by the project manager
(e.g., using a simple sequence). The column entitled “Risk description” describes the
risk by using the following formulation: “if event X happens then its consequence
will be Y.” For example, “if the estimation of the effort is incorrect by 10%, then the
product delivery could be two weeks late.”

11.3.1.2 Risk Analysis Activity

Once the risks are defined and documented, we proceed with the analysis of each
risk. The probability of each risk and the impact is identified as well as the possible
interactions between risks. The tools and techniques for this activity are: cost models,
quality factor analysis (e.g., reliability, availability, security), sensitivity analysis, and
decision trees [BOE 91].

Here is a list of questions that can facilitate the analysis:

– when could the event happen?
◦ under what circumstances?
◦ when should you act to avoid or lessen the consequences?
◦ what could happen afterward?

– what is the probability of occurrence?

– what is the consequence?

Table 11.7 Risk Documentation Grid

Risk identification number Risk description P C E Risk mitigation

1
2
3

Source: Adapted from Wiegers (1998) [WIE 98].

11.3 Practical Considerations for Risk Management 473

– in what way can we quantify the consequence?

– what can we control or influence?
◦ the probability of this event occurring?
◦ the probability of possible results?
◦ the consequence of the result?

A project is high risk if three or more of the following criteria exist:

– a new application domain;

– documentation is not updated;

– lack of experienced personnel;

– inflexible schedule;

– changing requirements;

– a new customer;

– a software defect that would lead to injury, financial loss, or environmental impacts.

Table 11.7 above indicates how to document a risk analysis. Column P is the
probability of the risk occurrence, on a scale of 1 (not very probable) to 5 (almost
certain to occur). Alternatively, you can also express the probability by the rating
of low, medium or high. Column C describes the consequence if the risk becomes a
problem, expressed on a scale of 1 (of little consequence) to 5 (catastrophic conse-
quence), or with a rating of low, medium or high. Column E indicates the exposure
to the risk. If numerical values were used to estimate the probability of the risk and
its consequence, then the exposure is equal to P × C. If relative interval rating values
have been used (e.g., low, medium, high), we can estimate the risk exposure using
Table 11.8.

Figure 11.8 presents a risk description template originally presented by Wiegers
in [WIE 98]. It contains more information than the risk classification grid above.

Table 11.8 Risk Classification Grid

Consequence

Probability Low Medium High

Low Low Low Medium
Medium Low Medium High
High Medium High High

Source: Adapted from Wiegers (1998) [WIE 98].

474 Chapter 11 Risk Management

Identification: <Sequential number or a more significant name>

Description: <List each major project risk. Describe each risk using the notation
'condition-consequence’>

Consequence: <What is the
harm/damage if the risk
becomes a problem?>

Mitigation approaches: <List one or more actions to control, prevent, minimize, or mitigate this risk.>

Owner: <Assign each mitigation action to
a person for resolution.>

Deadline: <Specify the date the mitigation should
be completed.>

Probability: <What is the
probability that this risk
becomes a problem?>

First indicator: <Describe the earliest indicators or trigger condition that could indicate that this risk
becomes a problem.>

Exposure: <Multiply the probability
by the loss.>

Figure 11.8 A risk documentation template [WIE 98].

A field entitled “first indicator” documents the trigger that would cause this risk to
become a problem. Another field identifies the individual responsible for acting on
that risk and another indicates the time when risk mitigation should be completed.

11.3.1.3 Risk Prioritization Activity

This activity produces a prioritized list of risks, such as the top-ten risks, that have
been analyzed. Priority-setting techniques include: risk analysis, cost-benefit analy-
sis, and the Delphi technique [BOE 91]. Regarding priorities, there are two simple
questions to be asked:

– what is going to hurt the project the most?

– what is going to hurt the project the soonest?

If numerical values are used to determine the likelihood and consequence of a
risk, one can then calculate risk exposure using the simple calculation “probabil-
ity × consequence.” For example, for a probability of 3 and a consequence of 4, we
will get a priority of 12. You could add a column, to the right of the grid presented
in Table 11.7 to document the resulting exposure. Having estimated the exposure of
each risk, it is now easy to prioritize them.

Now that the risks have been assessed and prioritized, we can proceed with the
risk control activities.

11.3.2 Risk Control Step

The risk control step involves three main activities: RMP, risk resolution, and risk
monitoring.

11.3.2.1 RMP activity

Risk management planning is the selection of a risk management technique for each
identified risk within the context of the project. The techniques and tools include risk

11.3 Practical Considerations for Risk Management 475

control lists, cost–benefit analysis and the description of the contents of the RMP
according to the standard used.

Each risk identified has its own mini action plan. The RMP consists in integrating
each mini action plan. Some parts of the RMP may appear in other documents such
as the project plan. For a large project, the table of contents of a plan may include the
elements listed in the table of contents of ISO 16085 presented above. The RMP, once
approved, is baselined and stored in the organizational repository. The RMP and it
should follow, like any other document of a project, the organization’s configuration
management process.

Risk Mitigation

A risk response strategy whereby the project team acts to reduce the probability of occur-
rence or impact of a risk.

PMBOK® Guide [PMI 13]

Risk Treatment

Process to modify risk.

Note 1: Risk treatment can involve:
◦ avoiding the risk by deciding not to start or continue with the activity that gives

rise to the risk;
◦ taking or increasing risk in order to pursue an opportunity;
◦ removing the risk source;
◦ changing the likelihood;
◦ changing the consequences;
◦ sharing the risk with another party or parties (including contracts and risk financ-

ing);
◦ retaining the risk by informed decision.

Note 2: Risk treatments that deal with negative consequences are sometimes referred
to as “risk mitigation,” “risk elimination,” “risk prevention,” and “risk reduction.”

Note 3: Risk treatment can create new risks or modify existing risks.

[ISO Guide 73]

The column “risk mitigation” in Table 11.7 (also called “risk reduction”) indi-
cates, for each negative risk, an approach to avoid the risk, to transfer, check, accept,
or monitor the risk. The risk mitigation actions must produce tangible results that will
determine whether the risk of exposure changes [SEI 10a]:

– risk avoidance refers to the elimination of the risk from the project. For exam-
ple, this can be done by not developing a risk component;

476 Chapter 11 Risk Management

Table 11.9 Expanded Risk Document Grid [WIE 98]

Risk Person Risk mitigation
identification Risk Risk responsible completion Status
number description P C E mitigation for risk date (P/C)

1
2
3

– risk transfer is to divert to a third party, such as a supplier, the risk and the
responsibility of its resolution. Transferring the risk does not eliminate it;

– risk acceptance means that no action will be taken regarding the risk;

– risk control means that certain actions are taken, between now and the time
when the risk can occur by reducing the probability and/or impact or its con-
sequence;

– risk monitoring means observing and periodically re-evaluating the risk to
detect changes in parameters.

Contingency planning means that preparations are made before the time when
the risk can materialize, which define actions to be taken should the risk occur.

It is possible to add additional columns to the grid. For example, one might
add the name of the person responsible for a risk to the right of the grid shown in
Table 11.9. We could add a column to the right to indicate when the risk mitigation
actions should have been established. Finally, we could add a column to show the sta-
tus of the actions to reduce each risk as follows: P for in progress and C for completed.

For small projects, we could add, as an annex, the form illustrated in Figure 11.9
or the individual risk forms illustrated in Figure 11.8.

Probability

Impact

Low

Medium
High

54321

1

2

3

5

4

Figure 11.9 Grid illustrating risk
exposure using three categories.

11.3 Practical Considerations for Risk Management 477

11.3.2.2 Risk Resolution Activity

The resolution of risks produces a situation in which identified risks are eliminated or
otherwise resolved (e.g., by easing requirements) using the risk mitigation techniques
documented in the project plan developed in the previous activity.

11.3.2.3 Risk Monitoring Activity

Monitoring risk involves monitoring project progress to address risk factors and take
corrective action if necessary. The techniques and tools include: risk audits, gap anal-
ysis and trends, project reviews, monitoring milestones, and the list of the most sig-
nificant risks [BOE 91]. We can use the form illustrated in Figure 11.9 or the set of
individual forms of Figure 11.8 during the project progress meetings to track each risk
and, if necessary, make changes to documents (e.g., probability, consequence, status).

Keep looking for new risks after the start of a project. The project conditions may change
and risks that had not been identified at the beginning of a project, or for which the prob-
ability seemed very small, can now become part of the threats to the project.

It should not be assumed that risk is controlled simply because the selected miti-
gation measures were carried out. By conducting periodic risk control, we may need to
change the control strategy of a particular risk if it is ineffective.

11.3.3 Lessons Learned Activity

The elements of the risk management process, as shown in Figure 11.7, can be
improved by conducting lessons learned sessions, as discussed in Chapter 5, at the end
of a development project to identify weaknesses and propose possible improvements.

When holding a lessons learned session, the project manager and his team could
discuss the project risks, the risks identified and described in the project plan and
unidentified risks that came up during the project.

Regarding the risks identified (i.e., the known risks) and documented in the
project plan, the team could discuss the probabilities, consequences, and mitigation
measures that were satisfactory. Otherwise, the team could suggest improvements to
the process.

For risks that were not identified (i.e., the unknown risks), were these risks on the
list of potential risks of the project management process but were not identified during
the development of the project plan? In this case, the project manager should analyze
the assumptions he used for the preparation of the project plan and decide whether to

478 Chapter 11 Risk Management

amend the risk management tasks of the planning process. If the risks that were not
identified were not on the list of potential risks, the project manager should perhaps
add them to the list of risks. The new list of risks will be used in a future project.

During a major hardware and software installation, system managers had indicated that
the system was not in operation from midnight to 5 A.M. The manager for the supplier,
who was responsible for the installation, prepared a project plan that allowed employees
to install hardware and software from midnight to five in the morning.

Upon arrival on site, the maintenance manager indicated that, even if the system
was not in operation from midnight to 5 A.M., employees used the system to perform
daily maintenance operations. The actual time left for the supplier’s installation task was
now down to only 2 hours a day. The system manager of the supplier had to rework the
installation plan by adding many days to the initial schedule and, since this facility was
located more than 500 kilometers from their office, he had to significantly increase the
budget for living expenses and add air travel costs for his employees so that they could
return to their families on weekends and holidays.

11.4 RISK MANAGEMENT ROLES

A risk management process requires the participation of several project stakeholders
such as the project manager, the development team, marketing and customers. In a
small entity, one person may play many of these roles:

– the project manager is responsible for managing the risks associated with the
development and maintenance of the system and ensures that risk management
is conducted in accordance with the organizational process;

– the risk manager (a role of large organizations or projects): the project manager
of a large project can choose to play this role. This role must perform the risk
management process and serve as a “facilitator” for the risk analysis activity
with other stakeholders;

– developers participate in the risk identification, analysis, documentation, and
monitoring;

– SQA periodically reviews risk management activities to ensure that they are
carried out as they were planned by the project. The SQA specialist can also
participate in the risk identification and lessons learned by playing the role of
a facilitator;

11.5 Measurement and Risk Management 479

– configuration management can also play a role in risk monitoring and report-
ing. For example, the CM manager could be responsible for determining the
risk status;

– risk monitor or risk owner is the person responsible for monitoring the evolu-
tion of a specific risk.

11.5 MEASUREMENT AND RISK MANAGEMENT

Assessing risk requires the following measures at the least:

– probability: a measure of the likelihood of a threat occurring. For example, this
measure can be a value from 0 to 5 or 0 to 10 or a qualitative value such as low,
medium, high. Table 11.10 shows an example;

– a measure of the extent of the potential impact or consequence of the risk: a
measure of the loss than could occur if a threat materializes. For example, this
measure can be a value from 0 to 5 or 0 to 10 or also a qualitative value, such
as low, medium, or high. Table 11.11 shows an example;

– risk exposure: a measure of the magnitude of a risk based on the probability and
potential impact. It is easier to provide this if the probability and impact mea-
sures were calculated numerically. Otherwise, a grid, as shown in Figure 11.9,
may be used to illustrate the risk exposure using a scale of low, medium or high.
The portion of the grid which is located at the bottom left shows the low expo-
sure area, the upper right region indicates high exposure, and the intermediate
zone indicates an average exposure to risk.

Figure 11.10 shows three examples of risks. Risk 1 is a medium risk since it is
likely that the schedule is acceptable, risk 2 is low and risk 3 is a high risk.

Table 11.10 Example of Risk Probability
Categories

Value

1 Not likely
2 Low likelihood
3 Likely
4 Highly likely
5 Near certainty

Source: Adapted from Shepehrd (1997) [SHE 97].

480 Chapter 11 Risk Management

Table 11.11 Example of Risk Consequence Categories

Level Technical Schedule Cost

1 Minimal or no impact Minimal or no impact Minimal or no impact
2 Minor performance

shortfall, same
approach retained

Additional activities
required; able to meet
key dates

Budget increase or unit
production cost
increase <1%

3 Moderate performance
shortfall, but
workarounds available

Minor schedule
slippage; will miss
need date

Budget increase or unit
production cost
increase <5%

4 Unacceptable, but
workarounds available

Critical path affected Budget increase or unit
production cost
increase <10%

5 Unacceptable, no
alternatives exist

Cannot achieve key
milestone

Budget increase or
production cost
increase >10%

Source: Adapted from Shepehrd (1997) [SHE 97].

P
ro

b
a

b
il

it
y

Impact
54321

1

2

3

5

4

3

1

2

Level Technical Schedule Cost

1 Minimal or no impact Minimal or no impact Minimal or no impact

2 Minor performance shortfall, same
approach retained

Additional activities required; able to
meet key dates

Budget increase or unit production
cost increase < 1%

3 Moderate performance shortfall, but
work-arounds available

Minor schedule slippage; will miss
need date

Budget increase or unit production
cost increase < 5%

4 Unacceptable, but workarounds
available

Critical path affected Budget increase or unit production
cost increase < 10%

5 Unacceptable, no alternatives exist Cannot achieve key milestone Budget increase or production cost
increase > 10%

Value

1 Not likely

2 Low likelihood

3 Likely

4 Highly Likely

5 Near Certainty

Figure 11.10 Example of three project risks.
Source: Adapted from Shepehrd (1997) [SHE 97].

11.5 Measurement and Risk Management 481

For low risks, usually we will not take any specific action. For medium risks,
close monitoring will be sufficient, while for high risk, action must be taken as soon
as possible.

We can also measure different risk management elements during a project, for
example:

– the number of risks identified;

– the number of active risks;

– the number of risks by exposure category (e.g., low, average, high);

– the effort for risk management (e.g., in person-hours);

– the number of risks identified, managed, and monitored;

– the number of risks that were not identified;

– the number of risk management process audits;

– the number of closed risks since the project was started compared to the number
initially identified;

– the percentage of the budget dedicated to risk management activities.

Note that you should be prudent with these measurements since risk management
is already a delicate subject to manage.

The following text box describes an industry application of a risk management
approach.

Risk Management Applied to the Re-Engineering of a Weapon
System

Oerlikon Contraves (now Rheinmetall Canada) was the integrator of an air defense missile
system. The system consists of a missile launcher mounted on a tracked vehicle or a
fixed platform, together with radar and optical sensors, electronic control systems, and
communication equipment.

The corporate systems engineering process had been applied to the re-engineering
of two sub-systems: the launcher control electronics and the radar and electro-optical
operator consoles. The table below lists only the four activities and 12 tasks of the systems
engineering process related to the management of risks.

482 Chapter 11 Risk Management

Perform risk analysis Identify potential risks
Identify potential loss and consequences
Analyze risk dependencies
Identify risk probability of occurrence
Prioritize risks
Identify risk aversion strategies for each risk

Review risk analysis Review risk analysis
Identify risks to be part of the risk management

plan (RMP)
Plan risk aversion Define a risk monitoring approach

Estimate risk aversion strategy cost and schedule
Recommend risk aversion strategies

Commit to strategy Obtain stakeholders commitment

A two-section RMP was developed. The first section described the overview of the
project and defined terms such as:

– type of risk (cost, program, schedule, supportability, technical)

– assessment of risk impact (catastrophic, critical, marginal, negligible)

– overall categorization of risk (high, moderate, low)

The RMP specified who was responsible for the risk management and how the risks were
to be managed.

The second section of the RMP was mainly composed of a matrix that lists all of
the identified risks. The risk identification process was performed through brainstorming
sessions with both the development team members and stakeholders. Along with the list
of risks, in the same matrix, were the following elements of information:

– type of risk (i.e., cost, schedule, program, and technical)

– probability of occurrence (i.e., very low, low, medium, high, and very high)

– impact (i.e., negligible, marginal, critical, catastrophic, and cost)

– overall risk (i.e., low, medium, high, and cost)

– identification of impact on other projects

– brief resolution plan

– drop-dead date

– person(s) responsible (e.g., member of the project team, functional manager, project
manager, and director of engineering)

– hours or resources required to perform the project

– resolution Status (i.e., open and close)

11.6 Human Factors and Risk Management 483

Once the RMP was approved, actions and status of the risks were then reviewed on
a weekly basis during the project reviews. When costly mitigation actions were required,
for example, special resources and a considerable amount of hours, then specific risk
activities were directly integrated in the detailed work breakdown structure (WBS) of the
project plan and scheduled like any other major development items.

Adapted from Boucher (2003) [LAP 03]

11.6 HUMAN FACTORS AND RISK MANAGEMENT

Risk management is not a purely rational process. It includes a strong human and
cultural component regarding motivations, perceptions, interactions between roles,
communication, decision making, and risk tolerance.

For example, a corporate culture that values and rewards heroes and fire fighters
and that does not value people who can solve issues proactively before they become
problems, will have a hard time implementing an effective risk management process.
To change this culture, the organization will need to reward people who know how to
identify, address, and avoid risks before they become problems. The organization will
also have to accept that occasionally there will be fires to put out and that firefighters
will still be required.

The next text box presents some guidelines that allow a person to anonymously
report a risk in an organization that is wary of risks.

Anonymous risk reporting process in an organization that does not have a high risk
tolerance:

– Anyone, involved or not involved with a project should be allowed to report what is
perceived as an unreported risk or potential problem.

– Reporting can be submitted to an anonymous email address where messages are sub-
sequently sent to the project manager.

– Risks can be examined in a meeting, led by the project manager, where this information
is shared with every team member and stakeholders.

Table 11.12 lists some attitudes that, if present in an organization, will make it
difficult to implement an effective risk management process.

484 Chapter 11 Risk Management

Table 11.12 Attitudes that Make it Difficult to Implement Risk Management

We blame someone who has committed an error.
Information is not shared because information is power.
Lone rangers and fire fighters are promoted.
Failure is not an option and should not be possible.
We never talk about risks.
We look for scapegoats.
We never reflect on past projects.
We shoot the messenger when he comes with bad news.
We never address real problems in meetings.
We hide risks, because no contingency budget was approved.
We (i.e. management) do not want to hear about problems if the solution does not

come with it. “Don’t bring me problems, bring me solutions!”
We make decisions only when the problem has erupted into a crisis.
A quiet meeting is a sign that everything is under control.
We think that success comes with hard work.
We believe in miracles.

The next text box presents a list of excuses used to avoid implementing risk
management.

Excuses for not Using Risk Management

The “Software Project Manager Network” provides this list of excuses that managers and
developers have used to justify not using risk management:

1) We have no risks in this project.

2) Publicly discussing the risks will kill the project.

3) The customer gets anxious when he hears about a potential problem.

4) My client does not want to hear that he is a source of risk.

5) Risk identification is bad for my career.

6) This is a development project; why should we be concerned about the risks of main-
tenance?

7) How can you predict what will happen a year from now?

8) We expect to begin implementing risk management next year, after we have defined
the process and trained the staff.

9) Our job is to develop software and not to fill out bureaucratic forms.

10) The commercial software industry cannot waste time implementing risk manage-
ment.

11.7 Success Factors 485

11) We do not need a risk management program because we have frequent technical
discussions and meetings.

12) If I gave a realistic effort/schedule estimation, no one would listen.

13) The use of this tool is not a risk, the vendor told me!

14) This method is proven and is therefore not a risk. The speaker at the conference said
so!

15) The project is too small for risk management.

16) There is no risk to costs or schedule because the new technology will dramatically
increase our productivity by five or ten times.

17) New technologies, which we have never used before, will be used to mitigate the
risk.

18) We need to make the most economically advantageous proposal to win. We will
concern ourselves with the job (e.g., risks) when we get the contract.

19) We have to cut corners to win this contract.

20) We do not need risk management since this software is only one component of a
subsystem.

21) Our development approach is rapid application development so we do not need risk
management.

Adapted from SPMN (2010) [SPM 10]

11.7 SUCCESS FACTORS

The following text box lists some of the factors that help or prevent effective risk
management.

Factors that Foster Risk Management

1) A commitment from senior management.

2) Risk management is part of every project plan.

3) A risk management process that is documented and approved by management.

4) There is a risk reserve for contingencies.

5) Measures are collected and analyzed.

6) Risk management begins at the start of a project or when preparing a proposal.

486 Chapter 11 Risk Management

7) Anticipated risks are openly discussed.

8) A RMP is used.

9) The list of risks is analyzed and updated regularly.

10) Project performance measures are used.

When developing a project plan, any assumption that we make, often uncon-
sciously, is a risk that we accept. For example, an assumption used by most organiza-
tions when they underestimate effort is that the productivity of their programmers is
above average and therefore will require less effort. If you consider your developers
to be above average, while they are realistically average or even below average, your
risk increases right at the beginning of a project.

Factors that may Adversely Affect Risk Management

1) An organizational culture where the project will not be approved if one acknowledges
the risks.

2) An organizational culture that does not want to acknowledge risks.

3) A risk management culture that seeks to blame people who have made mistakes.

4) A RMP that stays on the shelves once approved.

5) Customers or managers engaged in tasks, milestones, technical commitments or unre-
alistic delivery deadlines.

6) Unplanned contingencies and unknown potential impacts.

7) No contingency built into schedules.

11.8 CONCLUSION

We can summarize risk management as taking into account these basic rules:

– always have an alternative;

– be prepared to manage crises;

– increase the probability of acceptable results;

– reduce the impact of less desirable results;

– reduce the probability of the risk event itself;

11.10 Exercises 487

– identify parallel tracks, delivery deadlines, decision points, and action plans;

– have a clear mechanism to solve problems and communicate results.

Do not forget that despite it all, risks can also be opportunities.

Software Engineering Institute:
http://www.sei.cmu.edu/programs/sepm/risk/risk.mgmt.overview.html
Society for Risk Analysis: a forum for individuals interested in risk analysis.
http://www.sra.org/
A public forum on risks caused by computers. Incidents have been inventoried since 1986.
http://catless.ncl.ac.uk/risks

11.9 FURTHER READING

Charette R. N. Software Engineering Risk Analysis and Management. McGraw-Hill, New
York, 1989.

Charette R. N. Applications Strategies for Risk Management. McGraw-Hill, New York,
1990.

Demarco T. and Lister T. Waltzing with Bears: Managing Risk on Software Projects, Dorset
House Publishing, New York, 2003.

Mcconnell S. Rapid Development: Taming Wild Software Schedules. Microsoft Press,
Redmond, WA, 1996.

Hall E. M. Managing Risk – Methods for Software Systems Development. Addison-Wesley,
London, UK, 1998.

Ould M. Strategies for Software Engineering: The Management of Risk and Quality. John
Wiley & Sons, Ltd, Chichester, UK, 1990.

Poulin L. Reducing Risk in Software Process Improvement. Auerbach Publications, Boca
Raton, FL, 2005.

11.10 EXERCISES

11.1 Develop and draw, using the ETVX notation and the ISO 16085 standard, a risk man-
agement process for an organization with fewer than 10 employees.

11.2 List five risks for each phase of a typical development project.

11.3 List five potential risks when reusing components already developed in your organiza-
tion.

11.4 List five potential risks when a project intends to acquire Commercial Off-The-Shelf
(COTS) software components.

http://www.sei.cmu.edu/programs/sepm/risk/risk.mgmt.overview.html
http://www.sra.org/
http://catless.ncl.ac.uk/risks

488 Chapter 11 Risk Management

11.5 An emergency plan is a plan that is implemented when a risk becomes a problem. Give
examples of emergency plans.

11.6 A supplier cannot deliver the software at the required level of reliability and conse-
quently the reliability of the system may not meet the customer performance specifica-
tions. Describe the possible risk management measures to be taken in such a case.

11.7 The interface with a new control device is not yet defined. The software driver may
take longer to develop than initially estimated. Describe the possible risk management
measures to be taken in such a case.

Chapter 12

Supplier Management and
Agreements

After completing this chapter, you will be able to:

– understand the importance, as well as the effect, of including SQA in projects
that involve external suppliers;

– know the requirements of the ISO 9001, ISO/IEC/IEEE 12207 standard, and
the CMMI® model for the management of agreements with suppliers;

– recognize the difference between suppliers and external participants;

– communicate and manage the risks associated with external participants;

– be aware of the two main software contract reviews;

– understand the requirements of the IEEE 730 standard regarding the monitor-
ing of suppliers in the quality assurance plan of the project.

12.1 INTRODUCTION

When software work involves external suppliers, the software quality assurance
(SQA) staff and project managers should be knowledgeable in the management of
suppliers and agreements/contracts. The quality of a relationship between partners is
a complex concept and it is key to the success of the project. We believe that adequate
preparation, the choice of an adequate agreement or contract type, frequent reviews,
and follow-up are fundamental for a good relationship. The development of contrac-
tual clauses that apply the knowledge described in this book is also key for delivering
quality software in this complex situation.

Ensuring quality results in this type of project requires that the supplier’s
personnel are involved and knowledgeable regarding SQA processes. To ensure this,
we expect that the supplier provides a SQA plan (SQAP) (in addition or included

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

489

490 Chapter 12 Supplier Management and Agreements

in the project and technical plans) before we can finalize contractual negotiations.
This allows SQA, as well as client’s project manager, to assess the SQAP intentions
of the external supplier for this project. Thus, the acquirer SQA function has the
important and arduous task to ensure early discussion on this type of software
project.

We have observed that customer satisfaction will be higher when the supplier
adopts a collaborative strategy as well as simple and straightforward language. The
following sections present an overview of the required knowledge in the management
of suppliers and contracts.

12.2 SUPPLIER REQUIREMENTS OF ISO 9001

Clause 8.4 of the ISO 9001 standard describes the control of externally provided
processes, products, and services, whether through:

– purchasing through a supplier;

– an arrangement with an associate company; or

– outsourcing to an external provider.

The controls required for external provision can vary widely depending on the
nature of the services or products acquired. The organization can apply risk-based
thinking (that was covered in a previous chapter) to determine the type and extent
of controls appropriate to particular suppliers and externally provided services and
products.

Customer

Person or organization that could or does receive a product or a service that is intended
for or required by this person or organization.

Example: Consumer, client, end-user, retailer, receiver of product or service from an
internal process beneficiary and purchaser.

Note 1 to entry: A customer can be internal or external to the organization.

Supplier

Organization that provides a product or a service.

Note 1 to entry: A provider can be internal or external to the organization.

Note 2 to entry: In a contractual situation, a provider is sometimes called
“contractor”.

ISO 9000

12.3 Agreement Processes of ISO 12207 491

Many topics presented in ISO 9001 are helpful in ensuring that a supplier delivers
quality software. For example, clause 4.4 insists that processes needed (i.e., inputs
and outputs), their interactions, and responsibilities and authorities be clear to ensure
that the quality system works effectively. Clause 5.1 goes further and recommends
that the supplier demonstrate leadership and commitment. Clause 6.2 discusses the
establishment of quality objectives and the planning to achieve them. We have already
covered this topic in an earlier chapter.

Clause 8.4 of ISO 9001 describes the controls required to manage a supplier’s
processes, products, and services: “The organization shall ensure that externally pro-
vided processes, products and services conform to requirements.

The organization shall determine the controls to be applied to externally provided
processes, products, and services when:

– products and services from suppliers are intended for incorporation into the
organization’s own products and services;

– products and services are provided directly to the customer(s) by suppliers on
behalf of the organization;

– a process, or part of a process, is provided by a supplier as a result of a decision
by the organization.

The organization shall determine and apply criteria for the evaluation, selection,
monitoring of performance, and re-evaluation of suppliers, based on their ability to
provide processes or products and services in accordance with requirements. The
organization shall retain documented information of these activities and any neces-
sary actions arising from the evaluations.” [ISO 15]

Additionally, clause 8.5 of ISO 9001 specifies the responsibilities of the procur-
ing organization regarding intellectual property [ISO 15]: “The organization shall
respect the property of customers or external service providers when it is under their
control or being used. The organization shall identify, verify, protect, and safeguard
the property that customers or external service providers have provided them for use
or incorporation into their products and services.”

12.3 AGREEMENT PROCESSES OF ISO 12207

There are two agreement processes in ISO 12207: the acquisition process and the
supply process: “These processes define the activities necessary to establish an agree-
ment between two organizations. If the acquisition process is invoked, it provides the
means for conducting business with a supplier. This may include products that are
supplied for use as an operational software system, services in support of operational
activities, software elements of a system, or elements of a software system being pro-
vided by a supplier. If the supply process is invoked, it provides the means for an

492 Chapter 12 Supplier Management and Agreements

agreement in which the result is a product or service that is provided to the acquirer.”
[ISO 17].

Acquisition

Process of obtaining a system, product or service.

Agreement

Mutual acknowledgement of terms and conditions under which a working relationship is
conducted.

Example: Contract, memorandum of agreement.
ISO 12207 [ISO 17]

According to ISO 12207, the purpose of the acquisition process is to obtain a
product or service in accordance with acquirer’s requirements. The process begins
with the identification of the customer needs and ends with the acceptance of the
product and/or service needed by the acquirer. The following activities are described
in the standard [ISO 17]:

a) prepare for the acquisition: the acquirer defines a strategy, describes what is
to be acquired in enough detail (i.e., system/software requirements) so that
the supplier can understand it;

b) advertise the acquisition and select the supplier: the acquirer communi-
cates the request for the supply of a product and/or services, then using
an established procedure, the acquirer evaluates and selects one or more
suppliers;

c) establish and maintain an agreement: the acquirer prepares and negotiates
an agreement with the supplier. During this activity, he identifies the nec-
essary changes and their impact on the agreement with the supplier includ-
ing: acquisition requirements, costs and schedule, and many other topics like
acceptance criteria, warranty, and licensing;

d) monitor the agreement: the acquirer assesses the execution of the supplier’s
activities in accordance with the software review and audit processes (as seen
in earlier chapters). He also provides data needed by the supplier and resolves
issues in a timely manner;

e) accept the product or service: the acquirer conducts the acceptance review
and testing of the deliverable. During this process the acquirer confirms that

12.3 Agreement Processes of ISO 12207 493

the delivered product or service complies with the agreement, provides pay-
ment or other agreed consideration, takes on the ownership of the configura-
tion management (as discussed in a previous chapter) and finally closes the
agreement.

According to the ISO 12207, the purpose of the supply process is to provide an
acquirer with a product or service that meets the agreed requirements. The following
activities are described in the standard [ISO 17]:

a) prepare for the supply: the supplier determines the existence and identity of
an acquirer who has a need for a product or service. Once done he defines a
supply strategy;

b) respond to a request for supply of products or services: the supplier evaluates
a request to determine its feasibility and how to respond. Then he prepares a
response that satisfies this solicitation;

c) establish and maintain an agreement: the supplier negotiates an agreement
with the acquirer that includes acceptance criteria. The supplier may identify
necessary changes to the agreement and their impact as part of a change con-
trol mechanism. Then a negotiation will take place and the final agreement is
made official;

d) execute the agreement: the supplier executes the agreement according to the
established project plans. The most important agreement execution activi-
ties are summarized as: reviews, choosing an appropriate software life cycle
model, detailing project management plans, including an SQAP, performing
V&V, assessing the execution and quality and managing subcontractors;

e) deliver and support the product or service: the supplier delivers the software
product or service as specified in the agreement. He also needs to provide
assistance to the acquirer in support of the delivered software.

A software quality management process suited for the project is established. This
is the mechanism to assure quality and conformance to established plans. As many
software engineering processes work together, the SQA process should be coordi-
nated with the software V&V, review and the audit processes. It also requires that a
SQAP (software quality assurance plan) be developed and typically include the fol-
lowing:

– quality standards, methodologies, procedures, and tools for performing the
SQA activities;

– procedures for contract review and coordination thereof;

– procedures for identification, collection, filing, maintenance, and disposition
of quality records;

– resources, schedule, and responsibilities for conducting the SQA activities;

494 Chapter 12 Supplier Management and Agreements

Once a plan is in place, it will be necessary to schedule the SQA activities and
execute the plan. A problem resolution process will be used between the acquirer
and the supplier during this period to solve all outstanding issues. For this process to
work correctly, individuals performing SQA functions should have a position within
the organization that provides an unimpeded communication mechanism with man-
agement. This will allow free circulation of the information for problem resolution.
Before delivery, software products will be verified to ensure they have fully satisfied
their contractual requirements and are acceptable to the acquirer.

12.4 SUPPLIER AGREEMENT MANAGEMENT
ACCORDING TO THE CMMI

We know that the CMMI® for Development (CMMI-DEV) is a descriptive model in
that it describes the essential attributes (or major attributes) that are expected from the
processes to be executed in an organization that is working, in this case, in the Supplier
Agreement Management process area of maturity level 2 of the staged representation.
This model is also used as a normative model because the objectives and practices
describe the practices that the acquirer expects from the in-house or external suppliers
undertaking projects in a contractual context. CMMI proposes that project managers,
in the acquirer’s organization, must master the agreement management process with
suppliers.

Acquisition Strategy

The specific approach to acquiring product and services that is based on considerations of
supply sources, acquisition methods, requirements specifications types, agreement types,
and related acquisition risks.

CMMI-DEV

Agreement management involving external suppliers is set at level 2 of the
CMMI-DEV. This is mainly due to the fact that acquiring software products and ser-
vices is much more common nowadays. CMMI describes the specific goals (SG) and
specific practices (SP) required as [SEI 10a]:

SG 1 Establish supplier agreements:

– SP 1.1: Determine acquisition type

– SP 1.2: Select suppliers

– SP 1.3: Establish supplier agreements

12.4 Supplier Agreement Management According to the CMMI 495

SG 2 Satisfy supplier agreements:

– SP 2.1: Execute the supplier agreement

– SP 2.2: Accept the acquired product

– SP 2.3: Ensure transition of products

Figure 12.1 shows the interaction between the SP of this process area.
In addition, according to the CMMI, the organization should commit that its

software projects follow a written policy for the management of software acquisi-
tion. Furthermore, a contract manager should be assigned for the establishment and
management of contract activities. CMMI also requires that these contract manage-
ment activities are reviewed with the project manager on a periodic basis rather than
on an event-driven basis.

Establish supplier agreements

Determine
acquisition

type

Select
supplier/

integrator

Establish
supplier

agreements

Execute the
supplier

agreement

Accept the
acquired
product

Ensure
transition
of product

Satisfy
supplier
agreements

Product
Agreement with

the supplier
Supplier

requirements

Figure 12.1 Interpretation of the CMMI-DEV for supplier agreement management [KON 00].

In addition to activities directly carried out regarding the project, CMMI suggests
that the organization has implemented project verification procedures. It is therefore
expected that the contract management activities be reviewed with management on a
periodic basis. To support this activity, SQA and project managers should carefully
review the activities and work products described in the agreement and/or perform
third-party audits, as described in an earlier chapter.

496 Chapter 12 Supplier Management and Agreements

The following anecdote describes how a public service manages its suppliers
using the CMMI model.

The Assessment of an Underground Transportation Equipment Supplier

A Canadian public service division, responsible for underground transport systems, added
a requirement that all its suppliers, located in many countries, demonstrate their software
process maturity level against the CMMI requirements in the tendering process for the
supply of a new subway car fleet and monitoring systems.

The contract of the customer stated that an independent assessment of the prime
contractor and all of its suppliers would be required within 90 days of signing a con-
tract. The contract would state that all of the suppliers who had not met a certain level of
maturity would need to develop action plans to improve their situation and report their
improvement progress on a monthly basis.

The contract also mandated the prime contractor to produce a specific action plan
showing how each supplier would reach the CMMI level of maturity required within
24 months of the signature of the contract.

12.5 MANAGING SUPPLIERS

As we have seen, the need to manage suppliers during a software project is presented
in many standards. The number of external providers that contribute to a software
project can be important and are often working in the background. There can also
be a partnership between suppliers. The bigger the project, the more complex this
situation can become. The types of suppliers can be:

– subcontractors: who take responsibility for a specific part of a contract. We will
call on contractors when seeking specific software expertise and also to ensure
the timely availability of experts when needed;

– software package suppliers: offering off-the-shelf software ready to be adapted
and implemented. These external providers are becoming more popular
because they offer proven software packages that can reduce new software
development costs and delays;

– consultants: who are hired on the project to help with specific tasks, such
as explain the requirements and business rules, develop interfaces with other
internal software, evolution and maintenance staff, and IT infrastructure staff.
These additional resources, coming from outside the organization, bring con-
siderable expertise to the project’s success but must be coordinated properly.

12.6 Software Acquisition Life Cycle 497

As the number of people involved grows, the more coordination and quality
issues can arise:

– deadlines: the orchestration of the various stakeholders may become more dif-
ficult and many meetings are needed to address the issues, verify each inter-
mediary deliverable and coordinate work. A problem with a key supplier will
have a direct effect on the project;

– quality of deliverables: we saw that quality issues can be varied, for exam-
ple: defects, failure to comply with established rules, incomplete intermediate
deliverables and misunderstanding of a requirement. These problems will cre-
ate rework and additional testing effort to re-verify deliverables;

– transition difficulty: during the transition, the software operation becomes the
responsibility of the customer. Customer software maintainers and IT oper-
ations can also identify non-conformities and ask the external providers to
rework their deliverables before accepting them. It is therefore important that
the SQA function help project managers that are involved with several external
providers in understanding the complex process that a project will require. It
can support this by describing the SQA tools available to help:
◦ prevent delays and make sure to prevent the arrival of impending problems;
◦ ensure early assessment of the quality of deliverables (preventive approach);
◦ pay attention to potential downstream requirements of IT operations and soft-

ware maintenance/support requirements;
◦ keep an eye on the performance of each stakeholder involved.

A solid SQAP (discussed in the next chapter) as well as a clear process map of
the software acquisition process are two key elements of success for these complex
software projects. The quality plan will bring more precision to the obligations of
each of the stakeholders and the process mapping will clarify the roles, activities,
and deliverables of the project from beginning to end.

12.6 SOFTWARE ACQUISITION LIFE CYCLE

Software projects that involve suppliers are often more complex than traditional soft-
ware development projects. To illustrate this, we will describe an acquisition process
specially designed for the acquisition of off-the-shelf products like SAP/R3 solutions,
Oracle Financials and similar software packages. There are several factors to con-
sider before purchasing such software solutions. The software acquisition life cycle
description will define and clarify the activities and the roles involved in the software
procurement process. It is an essential part of SQA for this particular situation.

A supplier management (SM) process requires goals, applicability, objectives,
and a detailed process mapping of the activities. The example that follows shows a
high level vendor management process for a real company.

498 Chapter 12 Supplier Management and Agreements

Supplier Management Process

Purpose of the Process

The goal of the software SM process is to select qualified software suppliers and manage
them effectively.

Applicability

The software vendor supplier process applies to all software products that are obtained
from suppliers, developed and maintained by a supplier including commercial off-the-
shelf software (COTS).

Objectives

– The acquirer selects qualified suppliers.

– The acquirer and the supplier of software products agree upon their mutual commit-
ments.

– The acquirer and the software product supplier maintain communication throughout the
project.

– The acquirer tracks the results of the software product provider and his performance
against commitments.

Overview of the SM Process

The process consists of two sets of activities: the SM-100 series, shown in the figure
below, defines the steps that start when a project requires software products that cannot
be developed internally and stops when a contract is awarded to a supplier.

Define outsourcing
requirements

Prepare rquest for
proposal (RFP)

SM120

Analyze and
Evaluate proposals

Negotiate terms
of proposal

SM-140

Award
subcontract

SM-130SM-110SM-100

Select the supplier and award the contract.

The SM-200 series, shown in figure below, defines the steps that begin after a con-
tract award and ends when the software products are delivered according to the require-
ments of the contract or when the contract with the supplier must be terminated. When the
contract closing activities have been completed, a review is usually performed to discuss
improvements in the SM process.

SM-210

Monitor
subcontract
performance

SM-220

Manage
subcontract

changes

SM-230

Receive and
accept product

SM-240

Close
subcontract

SM-250

Conduct lessons
learned review

Perform supplier monitoring and close the contract.

Adapted from Laporte and Papiccio (1997) [LAP 97]

12.7 Software Contract Types 499

The software acquisition life cycle is complex and needs to be described in more
detail so that external suppliers clearly understand what is expected of them. For a
large Canadian equipment distributor, three detailed process maps were developed to
better explain the detailed activities to the supplier. These maps describe the following
three steps (see Figure 12.2):

– the request for information (RFI) stage (stage 1);

– the supplier selection stage (stage 2);

– the adaptation and implementation of the software package (stage 3).

The RFI stage represented here aims at identifying and selecting the best can-
didates to lead a complex software project. The first activity of this process is to
document business requirements and existing processes/systems. The result of this
activity is high-level requirements. This is used as an entry point to develop the RFI,
which, once approved by the legal department, will be sent out to potential suppliers.
Each supplier response will then be evaluated and potentially used to help develop a
request for proposal (RFP).

As we can see from Figure 12.2, a number of roles and responsibilities as well
as templates are described and greatly clarify all the activities. When the customer
takes the time to provide this level of information, the quality of the project increases.
The two other process maps of this process (i.e., stage 2 and stage 3) are available
on this book’s website. The next section presents software contract types that can be
considered for software suppliers.

12.7 SOFTWARE CONTRACT TYPES

We have seen that the software acquisition life cycle processes require choosing a con-
tract type. Contracts, in the software domain are complex and involve legal, project
management, and technology-related clauses. There are many types of contracts. The
simplest types involve consultancy and contract hire where expertise is needed: for
example, to document requirements, to write specifications, or convert data. They
are relatively simple because the sums of money involved are small and when the
work is finished, the deliverables are verified by the customers. For larger endeavors
where the customer would like a turnkey solution, this contract type is not fit for that
purpose.

Another type of contract is the fixed-cost contract. When should this type of con-
tract be used? Projects with clear tasks are good candidates for a fixed price contract.
Some organizations are forced to use this type of contract by law. To clarify deliv-
erables, during requirements generation, a column can be added to the WBS defini-
tion of the tasks identifying each status task as clear/not risky or unclear/risky/surge.
For example, consider whether the daily operations and maintenance of a system, as
well as regularly scheduled maintenance requirements, are clearly identified and their
costs reasonably estimated. An unclear/surge task, like unscheduled maintenance or

500 Chapter 12 Supplier Management and Agreements

Figure 12.2 Example of a process map describing the RFI-RFQ stage for a software acquisition.

12.7 Software Contract Types 501

repair, could be contracted separately as time and materials, labor hours plus other
fixed costs.

Four popular contract types that are commonly used for software services acqui-
sition are listed below. Each type offers a different risk profile for the external provider
and the customer:

– fixed priced contract;

– cost plus percentage of cost;

– cost plus fixed fee;

– risk sharing.

For all these types of contracts, it is necessary that SQA takes the time to propose
appropriate contract clauses to the project manager. This will ensure the quality of
results (i.e., ensure alignment of the contract clauses with the process, project plan,
and SQAP). In addition, it is important to describe, among other things, how cost
overruns will be handled as well as the supplier cost control process.

12.7.1 Fixed Price Contract

This type of contract is an agreement where the supplier undertakes the work at a
specific price. The supplier assumes the greatest share of the risk. However, the profit
margin can be very advantageous. Indeed, the supplier’s interest is to reduce his costs
and be efficient because the margin between the agreed price and the actual cost of
the project will be his profit. The only way this can be done is if the supplier controls
the process. The contractor cannot control costs effectively without controlling the
processes, inputs, and outputs. This type of contract is rigid and uses a change con-
trol process when unforeseen activities need to be completed. This type of software
contract is usually used when the project specifications are well defined, contractors
are experienced and market conditions are stable. The main risk to the customers
are that software suppliers will typically provide a low bid to get the business and
then, once the work is started, will identify missing specifications and send change
requests. Enhancements are one of the most common sources of software supplier
claims for additional compensation with this type of contract.

When this type of contract has been chosen for a software project, SQA will
want to help the project management team to reduce uncertainty. A clear WBS will
be required from the supplier to verify that detailed activities required have been
already identified as part of the initial bid. When this cannot be done with assurance
then hybrid contracts should be considered. Currently, for turnkey delivery of com-
plex software solutions, a very popular approach consists of contracting an integrator.
An integrator is a special type of supplier that takes on the responsibility of coordi-
nating the overall responsibility for all the subcontractors (i.e., hardware, software

502 Chapter 12 Supplier Management and Agreements

package, data conversion, and others). In this situation, the integrator assumes a lot
of responsibilities. Consequently, the contract and SQAP will be more complex.

12.7.2 Cost plus Percentage of Cost

This type of contract will reimburse the supplier for allowable expenses specified in
the software requirements. In addition, the supplier receives a percentage, defined
in the contract, to reflect his profit. From the customer’s point of view, this type of
contract is riskier because there is little incentive for the supplier to cut costs. In fact,
the supplier will tend to increase costs since this will increase his profits.

With this type of contract, the project manager will want to focus particular atten-
tion on the control of worked hours and the cost of materials to ensure that the supplier
will not increase costs only for the purpose of increasing his profit.

12.7.3 Cost plus Fixed Fee

In this type of contract, the supplier charges back allowable expenses for performing
the software contract. The fixed fee is how the supplier makes a profit. Unless there
is a change to the contract, this fee remains constant throughout the contract.

The customer still assumes a high share of the risk. However, compared with the
previous type of contract, the supplier is encouraged to complete the work as fast as
possible to get his fee. Still, the supplier will try to lower his own costs and ensure a
profit margin on every activity. The project manager will have to ensure tight control
of worked hours and the quality of supplier personnel.

12.7.4 Risk Sharing

This type of contract is well adapted for complex software acquisitions. With this
type of contract, the supplier is reimbursed for allowable expenses for the execution
of the contract. In addition, the supplier has the opportunity to receive a bonus if
the work is completed early. This bonus will be paid if the final cost is less than the
agreed upon estimated price. The savings will be shared between the supplier and
the customer. Both the supplier and the customer share the advantage of completing
the project ahead of the deadline. On the other hand, missing the deadline is also a
shared risk.

Here is an example of the use of a risk sharing approach used as part of a large
financial software replacement project. In Figure 12.3, the costs borne by the cus-
tomer are in black and the costs borne by the integrator are shown in white. The
supplier agreed to implement this software package for $1,174,902 within 42 work-
ing days (i.e., 8 hours per day). This estimate includes some uncertainty and both
partners are willing to share the risk associated with missing this deadline but the

12.7 Software Contract Types 503

30%

40%

31,5 days 42 days 44 days 52,5 days
or 75% or 100% or 105% or 125%

Integrator (in white) Integrator
(in white)

Customer (in black)

Project delivered
under the estimate
= profit sharing

Project delivered
over the estimate
= risk sharing

-Integrator proposal
-Split 30%(c) - 70%(i) of benefits
if the project is delivered before
-Split 60%(c) - 40%(i) for late delivery
(except <5% where the customer pays
100% of the overruns)

Project delivered
over the warranty
= full integrator responsibility

Figure 12.3 Graphical representation of risk sharing contract.

customer wishes to obtain a guarantee of a fixed budget ceiling in the contract. Given
that the supplier that was chosen has a very good track record of executing this type
of project, this estimate is solid.

The stakeholders (i.e., the customer and supplier) agree that after a 5% overrun,
the costs will be shared in this way—60% by the supplier and 40% by the customer.
In addition, the customer wishes to establish a limit (a guarantee) because a fixed
budget needs to be approved. This limit is set at 25% of overrun. This means that
beyond a 25% overrun of the estimated budget, the supplier will have to assume all
the extra costs until the delivery. A careful and professional supplier will therefore
prepare his proposal accordingly and have confidence to assume that risk.

Let us look at the details of this contract. Table 12.1 describes the change in per-
centages and their effects. To calculate the values in this table, a simple slope formula
is used: for example, for the supplier y = 4.7x − 146.8, where x is the number of days
to complete the project and y is the percentage of cost over budget. This formula is
derived by considering the values from two data points in Figure 12.3: y2 = 100%,
y1 = 60%, x2 = 52.5 days, and x1 = 44 days. For example, if the project exceeds
14% from the target date, the integrator will assume y = (4.7 × 48) − 146.8 = 78.8%
of cost overrun. Alternatively, the customer will only pay the remaining 21.2%. The
interesting feature of this type of contract is that there is a maximum amount of risk
(i.e., cost) that can be identified at 12% = $36,226.

We know that schedule overruns are unfortunately very likely with these types of
software projects. Since all cost overruns beyond 25% will be borne by the supplier, it
is possible to calculate a maximum guaranteed budget for the customer should things

504 Chapter 12 Supplier Management and Agreements

Table 12.1 Maximum client budget of a risk sharing agreement for a software project.

Price of contract (set by
RFQ) $1174902

Estimated effort (set by
RFQ) 42 days Slope 4,7

Daily cost $27974 Intercept −146,8

% late
(days) Day

% risk of
supplier

% risk of
customer Late ($)

Cost to
supplier

Cost to
client

On time 42 0 0 $0 $0 $0

2% 43 0 100 $27974 $0 $27974

5% 44 60 40 $55948 $33569 $22379

7% 45 65 35 $83922 $54297 $29624

10% 46 69 31 $111895 $77655 $34240

12% 47 74 26 $139869 $103643 $36226

14% 48 79 21 $167843 $132260 $35583

17% 49 84 17 $195817 $163507 $32310

19% 50 88 12 $223791 $197384 $26407

21% 51 93 7 $251765 $233889 $17875

24% 52 98 2 $279739 $273025 $6714

25% 52,5 100 0 $293726 $293726 $0

Client budget for worst case =
1174902+$36226 =

$1211128

go very wrong. Looking at the cost to the client, the maximum value is reached at
a 12% overrun. With this type of contract, the customer’s project manager is fully
confident that with a budget of $1,211,128, he incurs no additional risk of overruns.
With this assurance, the project manager and SQA team can focus on the quality of
the deliverables.

To advise project teams and assist in the establishment of well-designed con-
tracts, the SQA specialist needs to be familiar with software contract types and
clauses. After planning a contract strategy and before signing this agreement, con-
tract reviews are required to ensure the alignment of the project plan, quality plan
and contract clauses. The next section presents the recommended contract review
activities.

12.8 Software Contract Reviews 505

12.8 SOFTWARE CONTRACT REVIEWS

There are two major contract reviews mandated to ensure the quality of a software
agreement. These two reviews (initial and final) aim to improve the odds of meeting
budget, schedule, and target quality. The requirement for a contract review process
should originate from the customer. Suppliers should make a substantial contribution
to these activities.

Contract review objectives are:

– to identify the factors that influence the magnitude of each review;

– identify the difficulties in conducting the contract review;

– to explain the activities and objectives for the implementation of each contract
review;

– to discuss the importance of conducting these reviews.

12.8.1 Two Reviews: Initial and Final

Many situations require the signing of a contract between a customer and a supplier.
The most common are:

– participation in a tender process;

– presentation of a proposal in response to a client request;

– receipt of a request or an order from another organization department.

The review process and its usefulness for detecting defects were discussed in a
previous chapter. The contract review aims at ensuring the quality of the software
contract and supporting documents. If applicable, the study of the project plans and
contract will ensure that a suitable type of contract has been selected and that suf-
ficient details have been included in the agreement concerning SQA, for all stake-
holders involved. The contract review process is typically conducted in two separate
steps:

– first step: initial review of the project proposal. This step looks carefully at the
original project proposal right at the time of supplier selection. This review
establishes:
◦ that the customer requirements list and the accompanying documents offer

enough details;
◦ that the supplier description concerning cost estimates, schedule, and

resources is detailed enough and contains SQA activities;
◦ the contract type recommended by the supplier;
◦ the supplier and subcontractor’s responsibilities.

506 Chapter 12 Supplier Management and Agreements

– second step: final review of each of the proposed contract clauses before sig-
nature. This second contract review allows for the detailed review of contract
terms, budgets, deadlines, warranty, and quality level including the amend-
ments agreed upon during contract negotiations meetings.

The contract review process can start once the project plans are submitted. Per-
sons conducting the review must have, on hand, a checklist to ensure the completeness
of items to be reviewed. After the completion of a contract review, it is necessary to
confirm that the modifications, additions and corrections are made by the supplier
to the contract. Proper contract configuration management must be applied. Some
organizations will also want to seek the participation of their legal department. These
delays must be taken into account.

Risks Related to Contracting Software Projects:

– delays in delivery;

– not having the expertise in the required domain;

– delivery within budget;

– in terms of software product quality;

– poorly written and missing documentation;

– project success;

– supplier bankruptcy;

– litigation;

– with regards to the intellectual property of software developed by a supplier;

– in terms of support after delivery, for example, many years of support required for an
organization that manages a subway, medical software, and so on.

Adapted from CEGELEC (1990) [CEG 90]

12.8.2 Initial Contract Review

As might be expected, the initial and final contract reviews that are proposed will
have different objectives. The objective of an initial contract review is to verify that
the following items have been satisfactorily completed:

– the customer requirements have been clarified and documented to a level that
provides a good comprehension of the task ahead. Some project planning doc-
uments and technical documents can be too general or imprecise. Therefore,
additional information should be obtained to refine and clarify expectations

12.8 Software Contract Reviews 507

and requirements. This document is a paramount component (i.e., attachment)
of a software contract;

– alternative options to acquisition have been investigated. Often, these alter-
natives have not been thoroughly considered at the onset of the project. This
initial contract review allows for alternative options to be considered one last
time: building a solution from the ground up, reusing or updating the existing
software, partnerships with other organizations to use their solution and finally,
when acquisition is imminent, contract types that would better fit the particular
situation;

– the planned responsibilities of project participants and stakeholders as well as
the planned approval process and communications channels are reviewed. The
final proposal should identify, as clearly as possible, formalities like: roles and
responsibilities, stakeholder activities and communication channels, interface
between groups involved, acceptance criteria (e.g., intermediary deliverables
and final solution) for users, maintainers, and infrastructure organizations, the
approval process stages and steps, as well as the inevitable change control pro-
cess;

– the risk management approach should be reviewed. We have already seen,
in this chapter, that the choice of a contract type already mitigates some
risks. Other areas of risks should be examined during this review: missing
description of complex requirements, missing comprehension of existing pro-
cesses/business rules, interdependencies to other ongoing projects, missing
expertise, and planned use of new and unproven technologies, techniques,
and tools. A previous chapter covered this topic in more detail and proposed
approaches;

– a review of the proposed estimates for resources, schedule, and budget. This is
key as historically, at RFQ response time, answers from suppliers do not pro-
vide much detail and do not always inspire confidence that all of what is needed
has been understood correctly and planned for in the project, for example: inter-
faces to other systems, data conversion, process re-engineering, training, and
change management.

In many software acquisition projects in which Dr. April has participated, the sup-
plier deliberately presents the lowest bid to win the contract. Then, as the project pro-
gresses, he will raise a number of change requests to compensate. To try to contain this
type of behaviour, customers should use solid contract clauses and project management

508 Chapter 12 Supplier Management and Agreements

processes that protect the client. Visit our website, in the contract section, to get use-
ful contract clauses that are adaptable to your particular situation. When knowledgeable
and professional organizations are involved, the contract is sound, the estimates and con-
tingencies are realistic, there is no need to play games, and it has been demonstrated
that fixed price contracts can be successful for both parties when a risk sharing contract
is used.

– a review of the ability of the supplier to meet his obligations. This area of the
review investigates the financial health, previously demonstrated track record,
and current ability of the chosen external provider that will lead the project. At
this time, we need to have a good level of confidence that the supplier person-
nel planned to be assigned to the project have the sustained availability, expe-
rience, and competence for the task ahead. You want to focus your attention on
the key personnel that are planned to be assigned and their previous expertise
on similar projects. You will also want to ensure that these key personnel will
not be removed during execution, that personnel that you find inadequate can
be replaced, and that there is a good understanding of the organization chart
proposed. This includes a review of the understanding of the notion of integra-
tor versus supplier. The term we like to use, in these types of complex and risky
software acquisition projects (for an example, refer to the contract example on
our website), is integrator. This is critical because an integrator is responsi-
ble for the coordination of the work of other suppliers for a turnkey solution.
This gives a lot of responsibilities to the external provider playing this role and
therefore, in this part of the initial contract review, it is necessary to validate
that this is well understood. A typical subcontractor will have limited respon-
sibilities which creates the possibility that an important activity or deliverable
is not assigned to anyone;

– a review of the ability of the customer organization to meet their project obli-
gations. It is common to ask questions about the suppliers’ ability to deliver
but have we done the same exercise with our own organization? In this part of
the initial contract review, consider internal expertise and the availability of: a
dedicated and committed customer representative, competent and available IT
staff from software architecture, business analysis, interface development, data
understanding/conversion, maintenance and infrastructure, and the support of
the legal department;

– the definition of integrator versus subcontractor. The term used to describe
the external provider is important because it impacts his responsibilities. An
integrator will be responsible for the totality of the turnkey deliverables. A
subcontractor is typically responsible for more limited work. It is necessary to
clarify these responsibilities in the contract;

12.8 Software Contract Reviews 509

– the definition and protection of the ownership rights. At this time all licensing
matters are reviewed to understand how the final software can be used and by
what organizations and users. Some organizations also take the time to review
the security issues.

As we have seen, the initial contract review is quite intensive and can be sum-
marized as described below.

A checklist you can use to ensure the eight topics of the initial contract review have been
addressed:

– the requirements, both functional and technical (e.g., the information technology
requirements), have been clarified and are documented in the planned contract attach-
ments;

– alternatives to acquisition have been considered, documented, and discarded;

– the relationship between the customer and the integrator is documented and roles and
responsibilities are clear;

– the risk management approach has been clarified;

– estimates have been reviewed and provide good confidence;

– the integrator’s abilities have been verified and provide good confidence, including the
understanding of the role of an integrator;

– the customer and the information technology abilities have been verified and provide
good confidence;

– rights of use and licensing have been reviewed.

12.8.3 Final Contract Review

Once a proper initial review has been completed, confidence that the software acqui-
sition will be a success improves greatly. This second review is concerned with the
detailed clauses of the contract:

– areas that have not been clarified in the attachments or in the text of the main
contract;

– all contract clauses that describe the agreed upon key processes to be executed
by both the customer and the integrator in this project;

– there has not been a last-minute change, addition, or omission in the contract.
All changes have been thoroughly discussed and agreed.

510 Chapter 12 Supplier Management and Agreements

Avoid Ending up in Court

Instead of using the contract to constrain the parties, it is important that both parties
completely understand their obligations before beginning the relationship. When both
parties develop a good partnership, the project will be a success. Litigation then becomes
less likely.

How can you know if you are partnering and not simply signing a contracting you
may later regret? The best indicator is that you feel that one party is trying to win some-
thing while the other party is losing. Adversarial attitudes appear early on with these types
of projects and you should look out for their signs. Win–lose situations are precursors of
litigation.

Adapted from DeMarco and Lister (2000) [DEM 00]

12.9 SUPPLIER AND ACQUIRER RELATIONSHIP AND
THE SQAP

IEEE 730 [IEE 14] has been created for the situation where software development is
considered to be carried out by a supplier and delivered to an acquirer. For this reason,
the entire standard is pertinent when a supplier and an acquirer enter into a relation-
ship for a software acquisition. This complex software project needs to describe, in
its SQAP, how suppliers will be managed to ensure a quality delivery. This standard
requires that means to achieve quality be described in a plan and a contract to ensure
that both supplier and acquirer clearly understand the requirements as well as their
responsibilities.

IEEE 730 explains, in detail, every SQA activity presented in the SQA process
of the ISO 12207 standard.

Warning Signs of Acquisition Headaches Ahead

– regularly scheduled status reports that are not delivered on time, lack of expected infor-
mation, or do not jibe with visible signs of progress, such as completed deliverables;

– uncompleted action items, unresolved issues, failed dependencies, conflicts that are not
being resolved effectively or other unfulfilled commitments;

– unqualified supplier or acquirer staff being assigned, or key supplier or acquirer staff
being replaced by other individuals;

12.10 Success Factors 511

– acquirer not actively managing and monitoring the relationship with the supplier;

– unrequested requirements being implemented or requested requirements being omitted
without negotiation and agreement;

– scheduled reviews that did not take place, or reviews that should have been scheduled
but were not;

– decisions not being made in a timely fashion by the right people, or decisions that are
not communicated promptly to the affected individuals;

– incomplete deliverables received, or contractually required deliverables that do not
appear;

– documents being received, but no working software being delivered;

– processes that are not working well or are being bypassed inappropriately;

– project-tracking trend charts (such as earned-value, defect-detection, defect-closure,
and requirements-change charts) that do not show signs of completion being forthcom-
ing;

– actual cost, schedule, or effort results that deviate significantly from estimates without
explanation;

– missed early milestones, which do not bode well for completion of future milestones.

Adapted from Wiegers (2003) [WIE 03]

12.10 SUCCESS FACTORS

We summarize the factors that affect quality during the software acquisition process
in the next text box.

Factors that Foster Software Quality

1) Software acquisition process maps communicated to suppliers in RFQ.

2) A pre-approved adaptable software acquisition contract template is available.

3) Help and support of a knowledgeable QA specialist for contract reviews.

4) Using the appropriate contract type for the situation.

5) Review is done beforehand and there is follow-up during the project.

Factors that may Adversely Affect Software Quality

1) External providers that do not understand the software acquisition process.

2) Using the external supplier contract without having the opportunity to adapt it.

512 Chapter 12 Supplier Management and Agreements

3) A software acquisition contract that was not reviewed by the project manager and the
QA specialist.

4) Choosing an inappropriate type of contract.

5) Not receiving progress reports or receiving reports that contain partial information.

6) Action items that stay open, unresolved questions and conflicts.

7) Unqualified or constantly changing personnel.

8) Missing or delaying software product reviews.

12.11 FURTHER READING

Ebert C. Software Engineering on a Global Scale: Distributed Development, Rightshoring
and Supplier Management. IEEE Computer Society, Los Alamitos, CA, 2011.

Tollen D. The Tech Contracts Handbook: Software Licences and Technology Services
Agreement for Lawyers and Businesspeople. American Bar Association, Chicago, IL, 2011.

Verville J. and Halingten A. Acquiring Enterprise Software: Beating the Vendors at Their
Own Game. Prentice Hall, Upper Saddle River, NJ, 2000.

12.12 EXERCISES

12.1 One of the objectives of a contract review is to assess the risks of going forward with
the agreement.

a) List the types of risks that are more likely to be present.

b) What activities can you suggest to mitigate these risks?

12.2 The complexity of a contract review varies according to the complexity of the software
acquisition project:

a) What are the software acquisition project characteristics that justify using the rec-
ommendations made in this chapter?

b) What adaptations of the concepts presented can be made for small software acqui-
sitions? Explain what can be left out and why.

12.3 It is sometimes difficult to successfully conduct contract reviews:

a) List the difficulties of conducting contract reviews.

b) Can you create a checklist that will remind you of the important items to be
reviewed?

12.4 Explain the difference between a supplier and an integrator.

12.5 Describe the risks incurred by an organization when it wants to acquire a software
product from a supplier that himself uses subcontractors.

12.12 Exercises 513

12.6 Describe two essential activities to ensure the good management of multiple suppliers in
a software acquisition project. Explain why you think these two are the most important.

12.7 Explain the differences between a cost plus percentage of cost contract and a cost plus
fixed fee contract.

12.8 Describe the terms of a potential risk sharing agreement for a 40–60% before deadline
delivery as well as a 50–50% when an overrun occurs (except for overruns between
1% and 10%, where the customer absorbs 100% of the overrun costs). The estimated
budget is a million dollars:

a) Draw the contract risk sharing diagram.

b) Develop the cost sharing table as well as a detailed description of the risk shared
between the customer and the integrator.

c) What is the maximum overrun possible?

d) What is the maximum price guaranteed by this contract?

Chapter 13

Software Quality
Assurance Plan

After reading this chapter you will be able to:

– use the information provided in each chapter to develop a complete SQA plan
for a project;

– understand the SQA requirements presented in the IEEE 730 standard;

– refer to the detailed explanations in the appropriate chapter and section of
the book.

13.1 INTRODUCTION

This chapter is devoted to the use of concepts and practices presented in this book
to implement a software quality assurance plan (SQAP). Figure 13.1, adapted from
Daniel Galin’s house of software quality, connects all of the book’s concepts as com-
ponents that must come together to achieve software quality.

Before diving into the development of a SQAP, it is worth reviewing the defini-
tion of SQA as described in the following text box.

Software Quality Assurance

A set of activities that define and assess the adequacy of software processes to provide
evidence that establishes confidence that the software processes are appropriate for and
produce software products of suitable quality for their intended purposes. A key attribute

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

514

13.1 Introduction 515

Quality delivery

Quality Infrastructure

Standards
and Models
(Chap. 4)

Quality
Models

(Chap. 3)

Configuration
Management

(Chap. 8)

Reviews
(Chap. 5)

Audits
(Chap. 6)

Quality Culture (Chapter 2)

V&V
(Chap. 7)

Cost of
Quality

(Chap. 2)

Code of
Ethics

(Chap. 3)

Quality
Requirements

(Chap. 3)

5 dimensions
of a software

project
(Chap. 2)

References

Management Support

Effective and Involved SQA Group

Software Quality Assurance Plan (Chapter 13)

Defects
categories
(Chap. 1)

Integrity
levels

(Chap. 7)

Traceability
(Chap. 7)

Policies,
Processes,
Procedures
(Chap. 9)

Measures
(Chap. 10)

Supplier
Management
(Chap. 12)

Quality
Management

System
(Chap. 9)

Business
Models

(Chap. 1)

Checklists
(Chap. 9)

Risk
Management
(Chap. 11)

Motivated and happy
employees

Clear
processes

Continuous
training

Continuous
improvement

Figure 13.1 The house of quality for software projects.
Source: Adapted from Galin (2017) [GAL 17].

of SQA is the objectivity of the SQA function with respect to the project. The SQA func-
tion may also be organizationally independent of the project; that is, free from technical,
managerial, and financial pressures from the project.

Function

In a software application, a module that performs a specific action. In an organization, a
function is a set of resources and activities that achieve a particular purpose.

IEEE 730 [IEE 14]

IEEE 730 states that the term “SQA function” is not to be interpreted as a partic-
ular person, tool, document, job title, or a specific group dedicated to SQA, regardless
of how that function is staffed, organized, or executed. The SQA function’s respon-
sibility is to produce and collect evidence that forms the basis for giving a justified
statement of confidence that the software product conforms to its established require-
ments [IEE 14].

Two clauses of IEEE 730 are dedicated to the planning and execution of the
SQAP: clause 5.3.3 entitled “Document SQA planning,” and clause 5.3.4 entitled
“Execute the SQA Plan.” In the first part of this chapter, we present the SQA planning,
and in the second part, we will present the execution of the SQAP.

516 Chapter 13 Software Quality Assurance Plan

Thirteen mandatory tasks that are part of clause 5.3.3 describe what has to be
done by the SQA function during the software planning stage of a project. IEEE 730
states that SQA activities are planned and executed in a manner that is commensurate
with product risk—the higher the product risk, the greater the breadth and depth of
SQA activities.

As can be seen in the following text box, the IEEE 730 standard [IEE 14]
describes the normative outline of a SQAP.

Software Quality Assurance Plan—Outline

– Purpose and scope

– Definitions and acronyms

– Reference documents

– SQA plan overview
◦ Organization and independence
◦ Software product risk
◦ Tools
◦ Standards, practices, and conventions
◦ Effort, resources, and schedule

– Activities, outcomes, and tasks
◦ Product assurance
◦ Evaluate plans for conformance
◦ Evaluate product for conformance
◦ Evaluate plans for acceptability
◦ Evaluate product life cycle support for conformance
◦ Measure products
◦ Process assurance

� Evaluate life cycle processes for conformance
� Evaluate environments for conformance
� Evaluate subcontractor processes for conformance
� Measure processes
� Assess staff skill and knowledge

– Additional considerations
◦ Contract review
◦ Quality measurement
◦ Waivers and deviations
◦ Task repetition
◦ Risk to performing SQA

13.1 Introduction 517

◦ Communications strategy
◦ Non-conformance process

– SQA records
◦ Analyze, identify, collect, file, maintain, and dispose
◦ Availability of records

IEEE 730 [IEE 14]

One task included in clause 5.3.3, task 12, is quite clear about the content and the
development of the SQAP [IEE 14]: address all of the topics listed in the normative
SQA plan outline. Every section in the plan is to be included. The topics of the SQAP
are normative but the section names and order are informative. If a section in the
outline is not applicable to a given project, a placeholder for that section may be
included along with a justification for why the topic is not applicable. This clause
must be respected if an organization wants to claim conformance to IEEE 730. If an
organization does not have to conform to IEEE 730, it may use this chapter as a set of
guidelines in the development of a SQAP commensurate with the risks of the product
to be developed.

Preparing and obtaining sign off on a SQAP is often the project manager’s or the
quality assurance manager’s responsibility. SQA can help by offering a standardized
template, examples, and explanations that can assist with this task. Organizations
with an existing quality assurance function should have developed a SQAP template
adapted to their internal methodology. A quality plan, which describes the quality
activities and tasks to be executed during a software project, should be created from
this template, approved by stakeholders, and kept up to date throughout the project.
Exemplary SQAPs (i.e., from previous projects) can be made available in the life
cycle process library to facilitate the development of a project-specific SQAP and
to show newcomers examples of past projects in order to help them understand the
typical content required.

“In today’s software marketplace, the principal focus is on cost, schedule, and function;
quality is lost in the noise. This is unfortunate since poor quality performance is the root
cause of most software cost and schedule problems.”

Watts S. Humphrey

518 Chapter 13 Software Quality Assurance Plan

13.2 SQA PLANNING

The following sections present, in more detail, the contents of each section of the
SQAP according to Annex C of the IEEE 730 standard, and refer to specific chapters
and sections of this book where detailed information has already been provided on
the topic. Annex C also provides “suggested inputs” to help with the preparation and
execution of a SQAP.

13.2.1 Purpose and Scope

This first section of a SQAP should describe the purpose, objectives, and scope of
quality assurance activities that will be undertaken, including waivers obtained if
present. This section should also explicitly identify processes and software life cycle
products covered by quality assurance activities. It is a good idea to summarize which
business model is associated with the specific project. You can find information about
the different IT business models and their influence on quality assurance practices in
section 1.6 of this book.

Here are questions that the SQA function can ask during the project planning
phase to help refine the purpose and scope of SQA for a new software project (IEEE
730, Table C.3):

– Is the project scope clearly defined and well understood?

– Is the SQA role on this project understood by the acquirer, the organization,
the project team and the SQA team?

– Are potential product risks known and well documented?

– Are potential product risks understood so that SQA activities can be planned
in a manner commensurate with product risk?

13.2.2 Definitions and Acronyms

This section of the SQAP ensures that abbreviations and acronyms are explicitly
stated. Refer to Chapter 1 to review information about the terminology that should
be used consistently by software engineers when discussing quality. This is impor-
tant because using recognized and standardized terminology that is fully aligned with
approved software engineering standards will ensure that you can use your body of
knowledge when a problem occurs. If a debate occurs, during final testing and deliv-
ery, about the meaning of a deliverable or a responsibility, you will always be able to
fall back on your standards and body of knowledge to explain the intended meanings
and solve these issues rapidly. It also ensures definitions, acronyms, and abbreviations
are clarified for the project participants.

13.2 SQA Planning 519

13.2.3 Reference Documents

This section of the SQAP identifies all applicable standards, industry-specific reg-
ulations and compliance clauses of contracts, other documents referenced by the
SQAP, and any relevant supporting documents. Supporting documents may include
applicable professional, industry, government, corporate, organizational, and project-
specific references. Here are the questions that should be answered during the project-
planning phase (IEEE 730, Table C.4):

– What government regulations are applicable to this project?

– What specific standards are applicable to this project?

– What organizational reference documents (such as standard operating pro-
cedures, coding standards, and document templates) are applicable to this
project?

– What project-specific reference documents are applicable to this project?

– Is SQA expected to assess compliance with applicable regulations, standards,
organizational documents, and project reference documents?

– What reference documents are appropriate to include in the SQAP?

The configuration management chapter of this book has presented how to refer,
safeguard and manage successive versions of key project documents and life cycle
artifacts. Documents referred to may include industry, legislative, or contractual doc-
uments pertaining to the project. The SQAP should also identify the origin of the
project’s requirements such as contracts, specifications documents, or deliverables
list. Key project documentation and mandatory deliverables should be described with
more detail, such as:

– the mandatory project deliverables that will be monitored, reviewed, and autho-
rized during this project;

– where these documents/deliverables can be accessed;

– a reference to existing templates and examples, when available, that will help
participants better understand the expected scope and content to avoid misun-
derstandings;

– identification of the role or individual who will be responsible for creating the
deliverables and authorizing changes once official versions are published and
finalized.

The benefit of this section of the SQAP is that by trying to produce Table 13.1 at
the beginning of a project, the project manager will be forced to: (1) identify manda-
tory deliverables and (2) see if all the resources are available for the task ahead.

It becomes a useful checklist during project planning. Table 13.1 shows an exam-
ple of the description of two mandatory software project deliverables. Organizations

520 Chapter 13 Software Quality Assurance Plan

Table 13.1 Example of Key Documents and Mandatory Deliverables Checklist for the
Project

Document name File name Location

Reference
template
used Authors Approbation

Project plan Project_143_
plan.doc

C :Project_
143-\Plan

Yes M. Smith A.Anderson

Functional
specifications

Project_143_
specs.doc

C :Project_
143-\Specs

Yes D. Connor B.Thomas,
P.Rodriguez

.

must decide on their minimum list of mandatory deliverables to be produced during
a software project to ensure that the software meets the internal requirements of their
internal software development methodology.

When reviewing the SQAP and during project reviews, the following questions
should be asked:

– Is this table complete? Are all the mandatory documents/deliverables listed
(i.e., refer to the mandatory deliverables mentioned in the organization’s
methodology) for the project?

– Are the documents/deliverable templates identified and used by the project?

– Is there a SQA activity in the project schedule to review the quality of docu-
ments/deliverables?

– Can I easily find and access the content of the documents/deliverables?

– Who has access to the documents/deliverables? Is it the authorized and most
recent version?

– Are the project documents/mandatory deliverables under version control?

13.2.4 SQAP Overview—Organization and Independence

Software project organization and project management, as a whole, are topics that
have not been covered by this book. They are important topics that impact software
quality.

You can refer to the Software Engineering Management knowledge area of the SWEBOK
(www.swebok.org) as well as the PMBOK® Guide of the Project Management Institute
(www.pmi.org) for recommendations and more information on these topics.

let &hbox {char '046}www.swebok.org
http://www.swebok.org
let &hbox {char '046}www.pmi.org
http://www.pmi.org

13.2 SQA Planning 521

This section of the SQAP aims at clarifying the parties responsible for perform-
ing SQA, for a project, and seeks to present the interrelationship with the project
management team. A functional organization chart often represents these relation-
ships. If subcontractors are involved, the relationships and information flow between
SQA and each subcontractor should also be shown. By clarifying relationships in this
section of the SQAP it will be possible to see if the required roles and responsibili-
ties are present. Here are the questions that SQA can ask during the project-planning
phase concerning this topic (IEEE 730, Table C.5):

– Have deficiencies in the organization’s SQA policy been identified and
documented?

– Has the project manager established a method for monitoring the execution of
SQA activities, tasks, and outcomes along with a method for providing feed-
back to the independent SQA function (when present)?

– Has the project manager established an effective and appropriate policy defin-
ing and governing SQA roles and responsibilities during the project?

– Has the organization established an independent SQA function with sufficient
influence over software processes, including an effective reporting line inde-
pendent of the software development project?

– Has the organization established responsibility for supervising a project’s SQA
function by an individual independent of both the project manager and the
software development manager?

– Has the organization established a method to enable projects to learn from the
experiences of previous projects, if the SQA function is being established for
more than one project?

– Does the independent SQA review exist independently of SQA processes
established in individual projects?

– Have adequate resources, including sufficient numbers of suitably skilled and
trained people as well as sufficiently capable tools and equipment, been iden-
tified for the project?

– Has the degree of independence (i.e., technical, managerial, and financial) been
defined? (see Figure 13.2)

– Is the defined degree of independence appropriate, given the potential product
risk and the requirements when the project uses external suppliers?

It is therefore suggested that the organizational structure of the software project
be described and that the role of each participant is identified in this section
of the plan. Figure 13.2 shows individual part of the management committee,
project committee, and those supporting the project that will be asked to play
a role.

522 Chapter 13 Software Quality Assurance Plan

Project Mgr.

VP responsible
for the project

IT primePilot

IT analyst

IT experts

Project office

ParticipantParticipant

Co Pilot

IT analystIT analyst

IT specialist IT specialist IT specialistKey end-user

Security and
internal audit

Solution
architect

IT committee

Quality
assurance

Participant

HR business
partner

Ops &
infrastructure

Management
committee

Project
committee

Figure 13.2 Example of a software project functional organization chart for a large organization.

Creating a visual representation of a project organization will quickly highlight
if the numbers of individuals that have been assigned to the project are sufficient, if
they are located at the right place and if they are qualified to do the work.

RACI Chart or Matrix

Clarifies roles and responsibilities, making sure that nothing falls through the cracks.
RACI (Responsible, Accountable, Consulted, Informed) charts also eliminate redundant
activities (two or more people working on the exact same thing, without knowing it) and
confusion by assigning clear ownership for each task or decision.

Adapted from http://racichart.org

A RACI chart can also be used to describe each individual role. Rarely does
everyone on a team have the same understanding of who is responsible for what. A
RACI chart, also known as a RACI matrix, clarifies roles and responsibilities, mak-
ing sure that nothing is forgotten. RACI charts also eliminate redundant activities
and confusion by assigning clear ownership for each task or decision. It is impor-
tant to identify early if a person is playing too many roles or, conversely, if a role is

let &hbox {char '046}http://racichart.org
http://racichart.org

13.2 SQA Planning 523

Table 13.2 Specifying the Names of Individuals Who are Involved in a Project

Role Assigned to Responsibilities

Project
committee

A. Lopez (Pilot), G. Wright
(IT Responsible), M.
Thomas (SQA), P. Smith
(IT expert)

Follow the progress, address issues,
set project directions and priorities,
authorize budgets and changes.

Key end-user P. Clark, H. Johnson Validate requirements, functional
experts, conduct functional
acceptance of system.

currently vacant/unassigned. Table 13.2 is another simple way of documenting roles
and responsibilities of individuals in a software project.

This section of the SQAP should also specify the degree of independence
between the organization performing the SQA function and the project team mem-
bers. There are three parameters that can be used to define independence: (1) tech-
nical independence, (2) managerial independence, and (3) financial independence.
Technical independence requires that SQA utilize personnel who are not involved in
the development of the system or its elements. SQA forms its own assessments of
all project activities. Technical independence is an important method to detect sub-
tle errors overlooked by those too close to the solution. Managerial independence
requires that responsibility for SQA be vested in an organization separate from the
software development and program management organizations. Managerial indepen-
dence also means that SQA independently selects segments of software to analyze
and test, chooses techniques, defines the schedule of SQA activities, and selects the
specific technical issues and problems to act upon. The SQA effort provides its find-
ings in a timely fashion simultaneously to both the software development and pro-
gram management organizations. Financial independence requires that control of the
SQAP budget be vested in an organization independent of the software development
organization. This independence prevents situations where SQA cannot complete its
activities because funds have been diverted or adverse financial pressures or influ-
ences have been exerted.

“Quality is not only right, it is free! And it is not only free, it is the most profitable product
we have! The real question is not how much a quality management system will cost, but
how much the lack of one will cost.”

Harold Geneen
CEO ITT Corporation

524 Chapter 13 Software Quality Assurance Plan

13.2.5 SQAP Overview—Software Product Risk

The chapter on risk management has presented how risk relates to SQA. Software
product risk refers to the inherent risks associated with the use of the software prod-
uct (e.g., safety risk, financial risk, security risk). Software product risk is different
from project management risk, which is addressed later in this plan. Specific V&V
techniques may be required to address software product risk. Table 13.3 lists the ques-
tions and suggested inputs, such as a RMP, that SQA can discuss during the project-
planning phase (IEEE 730, Table C.7).

To explain the extent of risk management activities, this section of the SQAP
should clearly state what level of integrity the software being worked on is at. Crit-
icality analysis of software components, which includes four levels, was presented
in the chapter on V&V. The SQAP must ensure that the tasks and activities iden-
tified are carried out in a way that is commensurate with the level of criticality of
the assigned software. Depending on the software criticality, projects apply more or
less strict engineering and SQA requirements. This important information will allow
the reader to assess the number of compensating provisions required to mitigate the
consequences of software failure.

Table 13.3 Questions and Suggested Inputs Related to Software Product Risk to Consider
Asking During Project Planning Phase [IEE 14]

Questions Suggested inputs

– Are potential product risks known and well
documented?

– Are potential product risks understood so that SQAP
activities can be planned in a manner commensurate
with product risk?

– Has the scope of product risk management to be
performed been determined?

– Have appropriate product risk management strategies
been defined and implemented?

– Is a criticality analysis planned?

– Does the project team have adequate training in
product risk management techniques?

– Is the project team planning to adjust their activities
and tasks in a manner commensurate with product
risk?

– Are the breadth and depth of planned SQAP activities
commensurate with product risk?

– Acquisition plan

– Contract

– Concept of operations

– Risk management plan

13.2 SQA Planning 525

13.2.6 SQAP Overview—Tools

This section of the SQAP describes tools to be used by SQA to perform specific
tasks. These may include a variety of software tools to be used as part of the SQA
process. Appropriate acquisition, documentation, training, support, validation, and
qualification information for each tool is included in the SQAP. Here are the questions
that SQA can ask during the project-planning phase:

– Have adequate resources, including sufficiently capable tools and equipment,
been identified for the project as well as for other projects if the SQA function
is being established for multiple projects?

– Are all tools planned to be used by SQA on this project completely identified,
including supplier, version or release number, system platform requirements,
tool description, and numbers of concurrent users?

– Based on product risk, do these tools require validation before they can be used
on this project?

– Is training in the effective use of SQA tools required and if so, is training
planned?

Regarding the tools, do not forget to specify the version of the tools used for a
given project. It is also in this section of the plan that you should describe the tools
and techniques that will be identified by the team for this project.

13.2.7 SQAP Overview—Standards, Practices, and
Conventions

Chapter 4 of the book described software engineering standards and how they relate
to SQA. This section of the SQAP identifies standards, practices, and conventions to
be used in performing activities and tasks and for creating outcomes:

– Have all laws, regulations, standards, practices, conventions, and rules invoked
in the contract been identified?

– Have specific criteria and standards against which all project plans are to be
evaluated been identified and shared within the project team?

– Have specific criteria and standards against which software life cycle processes
(supply, development, operation, maintenance, and support processes includ-
ing quality assurance) are to be evaluated been identified and shared with the
project team?

Describe the techniques and methods to be used for the project. Chapter 9 dis-
cussed how policies, processes, and procedures are used by a project. For software
projects involving external suppliers, it is important to clarify which methodology
(e.g., Oracle Unified Method, IBM Rational Unified Process, Scrum) will be used

526 Chapter 13 Software Quality Assurance Plan

Table 13.4 Reference Table for Standards, Practices, and Conventions

Step of the life cycle Intermediary deliverable
Standard, practice, or
convention

Planning Project plan PMI - PMBOK® Guide
Planning SQAP IEEE 730
Programming Source code Java programming rules

revised April, 20 1999
Transition to production Technical documentation A local production criteria and

checklist

and also to clarify the obligations to produce certain mandatory deliverables (see
Table 13.2).

Methodology

A system of practices, techniques, procedures, and rules used by those who work in a
discipline.

PMBOK® Guide [PMI 13]

This section also lists which standards, practices, and conventions apply to this
project. It will specify the stage of the life cycle, the list of intermediate deliverables
as well the standards, guides, or conventions used to ensure that quality will be met
during reviews, inspections, and final acceptance steps of the project. We have dis-
cussed many standards and models in Chapter 4.

Table 13.4 provides an example of a simple presentation of these concepts.
By specifying these items in advance, we facilitate the task of reviewing the

quality plan and project reviews for the project manager and SQA specialist.

13.2.8 SQAP Overview—Effort, Resources, and Schedule

This section includes estimates of the effort required to complete the activities, tasks,
and outcomes as defined in the SQAP. This section identifies appropriately qualified
SQA personnel and defines their specific responsibilities and authority within the
context of the project.

This section also identifies additional SQA resources, including facilities, lab
space, and special procedural requirements (e.g., security access rights and docu-
mentation control) that are required to perform SQA activities. This section should

13.2 SQA Planning 527

also include a list of critical SQA project milestones and a schedule of planned SQA
activities, tasks, and outcomes. Here are the questions that SQA can ask during the
project planning phase:

– Can estimated effort and schedules be based on past projects?

– Can resource requirements for this project be determined based on past
projects?

– What resources (lab spaces, servers, software, databases, operating systems,
security rights, document control, etc.) are required for this project?

– Is effort based on factual information rather than “gut feel”?

– What estimating and scheduling techniques can be used for this project?

Typically, the estimates describe the software activities pretty well (i.e., feasibil-
ity, requirements, design, construction, testing, and delivery). But, have all the efforts
associated with the cost of quality been considered in these estimates and the sched-
ule (prevention costs, appraisal costs, failure costs)? Refer to section 2.2 on cost of
quality for details.

Software Estimation

We could not cover the software estimation process in detail in this book. If you are
looking for help with understanding and improving this practice, we recommend that
you consult the book published by Dr. Alain Abran: “Software Project Estimation: The
Fundamentals for Providing High Quality Information to Decision Makers” [ABR 15].
The book introduces concepts and examples to explain the fundamentals of the design
and evaluation of software estimation models.

For the assessment of the project schedule, this section of the SQAP should
describe the project milestones and the planned SQA in the project schedule. Specifi-
cally, it indicates the deliverables that will be produced by the SQA activities required
by the project manager and the project committee. A good schedule reflects all project
activities and shows the individual assignment of personnel. To verify whether a
scheduled assignment is realistic and reviewed, an assignment email could be sent
to individuals during planning. A letter of assignment (also called a work assignment
email) is to formally contact a project resource asking:

– if a review of the planned activities represented in the proposed schedule has
been done;

– to confirm the durations;

– if this planned assignment of work is correct and to confirm with a reply.

528 Chapter 13 Software Quality Assurance Plan

This simple approach validates the information described by the schedule. It
works especially well with team members that do not report directly to the project
manager. Finally, this section of the SQAP is also used to describe the qualifications of
staff who will perform SQA activities during the project and to clarify their responsi-
bilities, their degree of independence, and their authority to perform reviews, inspec-
tions, and ask for corrections. The plan should also identify additional resources,
including facilities, tools, test labs and other requirements (e.g., security permissions
and code/document repository access rights).

Assumption

A factor in the planning process that is considered to be true, real, or certain, without
proof or demonstration.

Assumptions Analysis

A technique that explores the accuracy of assumptions and identifies risks to the project
from inaccuracy, inconsistency, or incompleteness of assumptions.

Basis of Estimates

Supporting documentation outlining the details used in establishing project estimates such
as assumptions, constraints, level of detail, ranges, and confidence levels.

PMBOK® Guide [PMI 13]

Every project and its plan is conceived and developed based on a set of hypothe-
ses, scenarios, or assumptions. Assumptions analysis explores the validity of assump-
tions as they apply to the project. It identifies risks to the project from inaccuracy,
instability, inconsistency, or incompleteness of assumptions [PMI 13]. The PMBOK®

Guide recommends that assumptions made in developing the activity duration esti-
mate, such as skill levels and availability, as well as a basis of estimates for durations,
be documented in project documents. When developing a SQAP, assumptions should
be documented and analyzed when estimating effort, resources, and schedules.

13.2.9 Activities, Outcomes, and Tasks—Product
Assurance

Product assurance activities provide confidence that software products are developed
in conformance to established product requirements, project plans, and contractual
requirements. An important aspect of SQA is the establishment of confidence in the
quality of the software products produced by the project. These products include
not only the software and related documentation but also the plans associated with

13.2 SQA Planning 529

the development, operation, support, maintenance, and retirement of the software.
A product may also be a software service provided to the acquirer. Product assur-
ance activities may include SQA personnel participating in project technical reviews,
software development document reviews, and software validation testing.

The outcome of the product assurance activities provides evidence that the soft-
ware services, products, and any related documentation are identified in and comply
with the contract and any non-conformances are identified and addressed. Product
assurance is comprised of three activities:

– Evaluate plans for conformance: This section of the SQAP should include
activities and tasks for evaluating the degree to which all plans required by
contract have been prepared and are consistent with the contract and with each
other. Use reviews as described in an earlier chapter to do this evaluation;

– Evaluate product for conformance: This section of the SQAP should identify
activities and tasks related to the evaluation of the degree to which the software
product and related documentation conform to established requirements, plans,
and agreement. Refer to Chapter 7 for V&V and Chapter 5 on reviews for the
required outcomes for this activity.

– Evaluate product for acceptability: This section of the SQAP should identify
activities and tasks for evaluating the level of confidence that the software
products and related documentation will be acceptable to the acquirer prior to
delivery. Refer to Chapter 7 for V&V and Chapter 12 on supplier and contract
management.

Product assurance requires that some measurement be performed on software
products. This section of the SQAP should also identify activities and tasks for eval-
uating whether the measurements objectively demonstrate the quality of the prod-
ucts in accordance with established standards and processes. Section 3.3 of the book
describes a process to formally define software quality requirements in a project so
that the measurement can be used during acceptance. Chapter 10 also presents mea-
surement topics.

13.2.10 Activities, Outcomes, and Tasks—Process
Assurance

Similar to the product assurance, process assurance aims to ensure that the pro-
cesses used by the project are appropriate, depending on the level of integrity, and are
followed:

– Evaluate life cycle processes for conformance: Ensuring that the correct life
cycle has been selected confirms that adaptation, if any, of the life cycle activi-
ties and deliverables are appropriate. This section of the SQAP should identify

530 Chapter 13 Software Quality Assurance Plan

activities and tasks for determining the degree to which project life cycle pro-
cesses and plans conform to the contract and the degree to which the execution
of project activities conforms to project plans (e.g., life cycles selected and
adapted, procedures, deliverables templates, gating, project plan, and respon-
sibilities alignment with project/contract requirements). Refer to Chapter 9 on
policies, processes and procedures as well as Chapter 12 on contract reviews.

– Evaluate environments for conformance: This section of the SQAP should
identify activities and tasks for evaluating whether software development
environments and test environments conform to project plans (e.g., suitabil-
ity of development and test platforms, i.e., planning, sizing, and security),
tools validation, configuration management toolset, project documentation
server/folders). Refer to Chapter 8 for guidance on configuration management;

– Evaluate supplier’s processes for conformance: This section of the SQAP
should identify activities and tasks for evaluating whether supplier software
processes conform to requirements passed down from the acquirer (e.g., con-
tract reviews, supplier quality audit, supplier responsibilities review, subcon-
tract work traced and managed by the system integrator correctly). Reviews,
audits as well as supplier management have already been presented in earlier
chapters.

This section also requires the use of reviews and audits in the project. The reviews
were presented in Chapter 5 and audits in Chapter 6. Table 13.4 provides an example
of a simple presentation of reviews and audits for the project. Configuration manage-
ment concepts were also discussed in Chapter 8.

Process assurance requires that some measurement be done on software pro-
cesses. This section of the SQAP should identify activities and tasks for evaluating
whether the measurements support effective management of the processes in accor-
dance with established standards and processes (e.g., appropriate set of measures
identified and planned, a data collection and analysis process is selected, measure-
ment is consistent with product risk and overall quality goals). Measurement was
discussed in Chapter 10.

Finally, this section of the plan should assess staff knowledge and skill. It is
necessary that the plan outlines whether the staff assigned to the project has the qual-
ifications and training necessary. If a training plan is to be prepared and executed it
typically has two specific audiences: (1) technical specialists who will need specific
training and (2) user representatives who will perform the final acceptance as well as
future end-users.

In this part of the SQA plan, describe the scope of training needs and the scope
covered by the project. Here are the questions that SQA can ask during the project
planning phase:

– Have adequate resources, including sufficient numbers of suitably skilled and
trained people, as well as sufficiently capable tools and equipment, been

13.2 SQA Planning 531

identified for the project as well as for other projects if the SQA function is
being established for multiple projects?

– Have required project skills been identified?

– Have staff and subcontractor training records been reviewed against required
skills?

13.2.11 Additional Considerations

This section of the SQAP identifies any additional considerations, such as SQA pro-
cesses that support both Project Management and Organizational Quality Manage-
ment, that are not described elsewhere. The following topics are included in this sec-
tion of the SQAP:

– Contract review process: This section of the SQAP identifies or references
the contract review process and describes SQA roles and responsibilities with
regard to contract reviews. In the case where there are suppliers, subcontrac-
tors, consultants, or integrators, this section will specify the most important
clauses of this relationship. Chapter 5 review techniques can be used here. Sup-
plier and contract management concepts were discussed in Chapter 12 such as:
◦ describe the software acquisition process for the project;
◦ identify the reviews that will be conducted by the supplier during the project;
◦ identify the appropriate contract type;
◦ specify which contract template will be used and the planned contract

reviews.

– Quality measurements: This section of the SQAP identifies quality measure-
ments that are appropriate for the project, specific data collection requirements
associated with intended quality measurements activities as well as responsi-
bilities for data collection, measurement, and reporting. It should identify soft-
ware quality objectives, measurement processes, and tools that are appropriate
for this project. Before quality can be measured, it needs to be specified and
accepted as part of the project requirements. This section of the SQAP should
refer to the functional and non-functional quality requirements. Recommenda-
tions on how to define software quality requirements have also been presented
in section 3.3 and show how to:
◦ select and describe the quality characteristics and sub-characteristics to be

evaluated;
◦ specify how this will be measured and clarify the software attributes to be

measured;
◦ set a quality objective target for the project;
◦ describe, with an example, how the calculation is done;
◦ explain how and what tools will be used to evaluate this measure at the accep-

tance stage.

532 Chapter 13 Software Quality Assurance Plan

Table 13.5 Overview of Planned Reviews of a Project

Review name Objective Life cycle phase
Intermediary
product

Type of
review

Requirements Ensure the complete-
ness/testability of
requirements

Requirements
stage

Functional
specifications

Document
reviews

Architecture
and design

Ensure the
maintainability and
traceability of
design to
requirements

Architecture and
design stage

Design
documents

Document
reviews

Source code Ensure the
conformity to local
programming

Programming
stage

Source code &
unit test plans
and results

Code and
documents
inspection

Quality audit
just before
system tests

Progress and
readiness of
products

Integration tests
stage

Overall project Quality audit

– In addition to setting specific targets for quality measures, the plan should iden-
tify the measures that will be used to report:
◦ project progress for each of the five project dimensions of a software project

(e.g., schedule, staff, features, cost and quality) as presented in section 2.4
of Chapter 2 and referred to by the PSM in Chapter 11;

◦ defects density and reviews/audits of non-conformances correction status.

– Finally, this section of the SQAP should identify responsibilities for collection,
validation of this data, and reporting. Table 13.5 outlines the planned reviews
for a project.

– Waivers and deviations: This section of the SQAP defines or references the
criteria used to review and approve waivers and deviations to the contract and
project management controls. The SQAP describes SQA roles and responsi-
bilities with regard to reviewing and approving waivers and deviations. The
following text box provides a text that could be added to a SQAP.

A waiver request has been submitted to SQA—A waiver request should be reviewed and
approved by a manager of SQA. The waiver request should indicate which part(s) of the
SQAP is(are) requested to be waived. Once approved, the waiver request should be stored
in the configuration management system and all stakeholders should be informed about
the approved changes to the SQAP.

13.2 SQA Planning 533

A non-compliance with the requirements of the SQAP has been recorded by SQA—
Typically, a non-compliance report, resulting from an audit, with the SQAP is for-
warded to the manager of SQA and to the manager of the project. The project manager
should quickly respond to the non-conformity report by following the procedures of the
organization.

– Task repetition: This section of the SQAP defines or references the criteria
used to determine when and under what conditions, SQA tasks previously com-
pleted need to be repeated. This section will describe, if present, the iteration
tasks policy recommended after the identification of a defect (e.g., the rework
needed to correct a defect). For example, we know that each functional unit
of the software is subject to acceptance testing. At this time, the customer is
making reasonable efforts to continuously accept and validate this basic func-
tionality for each functional unit. The successful execution of the acceptance
test on each functional unit is the means that constitute validation of the basic
functionality of software. Should a defect or failure occur, it is necessary to
specify in this section of the SQAP, the process that will be initiated to doc-
ument the defect, assign a severity, assess the effort to correct the defect and
retest this functional unit. Refer to rework in section 2.2 of Chapter 2.

– Risks to performing SQA: This section of the SQAP identifies potential
projects risks that could prevent SQA from accomplishing its defined purposes,
activities, and tasks. Examples include inadequate staffing levels, insufficient
resources, and lack of training. Also included in this section are actions taken
to mitigate identified project risks. Chapter 11 presents the risk activities as
they relate to SQA.

– Communications strategy: This section of the SQAP defines the strategies for
communicating SQA activities, tasks, and outcomes to the project team, man-
agement, and organizational quality management.

– Document acceptance process: Often, and especially when suppliers are
involved, the project manager will have to decide on a process to review/accept
intermediary deliverables (i.e., requirements document, design documents, test
plans, and many other deliverables that are in the form of documents). At the
review meeting, a moderator may be assigned to record the minutes, which
detail all corrections and improvements agreed to during the meeting (refer to
Chapter 5 on reviews). Based on the severity of the required changes, a unani-
mous decision must be reached to:
◦ accept the document as is (acceptance);
◦ accept the document with minor changes (conditional acceptance);
◦ repeat the review when the significant changes agreed to in the review meet-

ing have been incorporated.

534 Chapter 13 Software Quality Assurance Plan

Table 13.6 Defect Severity Classification Example

Category Description

1 A defect that prevents the project from testing further as this defect needs to
be corrected before going ahead. A solution must be found immediately
and corrected before continuing to test this functionality.

2 An important defect that prevents the project from testing parts of a
functionality but other parts can continue to be tested. A solution needs to
be found in a reasonable delay.

3 A defect that does not cause a major problem for testing to continue. A
solution is required but can be placed in a priority list to be treated after
category 1 and 2 are done.

4 A minor defect to be placed in the list of things to do.

– The review minutes are then signed by all participants. If the document has
been conditionally accepted, an update of the document is prepared and the
moderator reviews the minor changes to ensure all items have been addressed.
The moderator then declares acceptance for this deliverable.

– Non-conformance process: This section of the SQAP defines activities and
tasks related to the process for reporting non-conformances for the project.
Non-conformances can be reported by any project member but, at the accep-
tance stage, will be controlled by a configuration control board (CCB), as pre-
sented in section 8.7.2.

– We have learned by experience that it is often necessary to clarify the soft-
ware Verification and Validation (V&V) terminology, processes, and tech-
niques (including testing details) that are planned for a project, especially if
it involves third-party suppliers. Contracts and third-party project plans noto-
riously omit details about this important quality activity. The technical details
about V&V should be presented in the quality and test plans of the project.
Use the SQAP to provide a checklist that will identify all of the V&V activi-
ties. Chapters 5, 6, and 7 have presented reviews, audit, and V&V topics. What
is important for SQA is to ensure that the project team chooses the appropri-
ate techniques depending on the required level of integrity and quality that is
expected from this project.

– An initial clarification that needs to be documented in the SQAP is how the
project will evaluate the quality of an intermediate deliverable (e.g., a doc-
ument) during an approval meeting where a review is conducted. It is also
important to clarify how a defect will be classified (see example in Table 13.6).
Defect severity is often used in contracts with third parties to assess if a mile-
stone has been achieved or not.

– In third-party contracts, it is also necessary to specify the testing levels as it
often causes confusion. You will probably need to create a process map of the

13.2 SQA Planning 535

project acceptance processes to ensure everyone understands how this will be
done. For example, Figure 13.3 presents a simple activity sequence diagram
that helps with an overall view of how this software will be finally accepted
into production and will meet each test level. In this example, three different
organizations are involved: the customer for functionality, maintainers for its
maintenance and support quality and, finally by the infrastructure team who is
concerned with the production readiness and reliability and many other oper-
ational aspects (using production criteria).

– Acceptance process: Here is another example of system and integration test-
ing (Figure 13.4). The system and integration test acceptance process consists
of the following steps: the supplier provides a system and integration testing
plan with an acceptance checklist at least one week in advance of the test. The
project team reviews the plan and the checklist within one week (see the docu-
ment acceptance process). Within 1 week of the supplier notifying the project
team of the availability of the deliverable for the system and integration test, the
project team attends a demonstration of the deliverable at which the test plan is
executed and the acceptance checklist is completed. Should any problems be
encountered, they are recorded as incidents (using a category from Table 13.6).
The supplier and the project team jointly sign the incident report summary for
this test. Based on the incident report summary for this deliverable, acceptance
is achieved when no unresolved category 1 and 2 defects (incidents) are open.
When any outstanding incidents are repaired, associated tests must be re-run.

System and
integration testing

Incident and defect
tracking process/tools
readiness review

Conduct acceptance
testing:
- Functional
- Maintenance and
 support
- Production
 criteria

Functional acceptance
testing readiness
review

Maintenance and
support acceptance
tests readiness review

Production criteria
acceptance readiness
review

Correction of
incidents and defects

Issue final system
acceptance certificate

Monitor production
system and levels of
service

Deploy to
production

Figure 13.3 Example of a workflow explaining the acceptance steps of a project.

536 Chapter 13 Software Quality Assurance Plan

Request to allocate a
test analyst to the
project

Review of requirements,
tests, SQA plan and
contract clauses

Review results of the
system acceptance
tests

Prepare user
acceptance test
environment

Communication
indicating start of
acceptance testing

Project manager Test (QC) analyst Key end-user

Develop project user
acceptance test plan

Create user
acceptance test cases

Approve user acceptance test plan,
schedule and acceptance criteria

Inform end-users
of acceptance test
preparation

Review end-user
business process
changes

Execute user acceptance
plan – test cases

Training and user
guides/procedures
review

Incident reports
Test report and
acceptance certificate

Test
results

Figure 13.4 Example of an acceptance process for a software project.

– Specify the acceptance criteria for the software. For example: the project will
be accepted by the customer if:
◦ 100% of the functionality approved in the requirements document has been

delivered and there is no level 1 or level 2 incident report pending a fix;
◦ The infrastructure and maintenance/support groups have no pending level 1

or 2 incident reports. If there is a level 1 or level 2 incident report, they will
have to be addressed before final acceptance of the software.

13.2.12 SQA Records

This section of the SQAP includes activities and tasks for analysis, identification,
collection, filing, maintenance, and disposition of quality records. Quality records

13.3 Executing the SQAP 537

document that activities were performed in accordance with project plans and the
contract. These records enable information sharing and support analysis to identify
problems, causes, and eventually result in product and process improvements. The
project manager and/or the SQA manager should ask the following questions related
to the analysis, identification, collection, filing, maintaining, and disposition of SQA
records during the project planning phase:

– What set of records is the project required to produce?

– What set of records is SQA required to produce?

– Is the information required to be included on each record defined?

– What mechanisms will be used to collect, file, maintain, and eventually dispose
of quality records?

– Who is responsible for collecting, filing, maintaining, and disposing of
records?

– Who is responsible for sharing records?

– What records are to be shared with stakeholders?

– What protections are required to be established in order to share these records,
maintain the integrity of the records, and prevent their modification or inadver-
tent release?

– What records are required from subcontractors?

13.3 EXECUTING THE SQAP

Once a SQAP has been developed and approved, the project has to execute it. The
purpose of clause 5.3.4 of IEEE 730 is to “Execute the SQA Plan” in coordination
with the project manager, the project team, and organizational quality management.
The tasks linked to the execution of the SQAP are quite explicit. To accomplish this
activity, the SQA function shall perform the following tasks [IEE 14]:

1) execute the activities and tasks defined in the SQAP, based on project
schedules;

2) create the outcomes identified in the SQAP;

3) revise the SQAP in response to project changes;

4) raise non-conformances when actual outcomes do not agree with
expectations.

Annex C of IEEE 730 provides, for each section of the SQAP, a list of questions
when executing SQA project activities described in the SQAP. Table 13.7 presents
an example of such a table for the questions and suggested inputs related to software
product risk to consider asking during the project executing phase.

538 Chapter 13 Software Quality Assurance Plan

Table 13.7 Questions and Suggested Inputs Related to Software Product Risk to Consider
Asking During Project Executing Phase [IEE 14])

Questions Suggested inputs

– Are risks identified and analyzed as they develop?

– Has the priority in which to apply resources to treatment of
these risks been determined?

– Are risk measures appropriately defined, applied, and
assessed to determine changes in the status of risk and the
progress of the treatment activities?

– Has appropriate treatment been taken to correct or avoid
the impact of risk based on its priority, probability, and
consequence or other defined risk threshold?

– Has a software integrity level scheme been defined for the
project?

– Has the software integrity level scheme been reviewed and
determined to be appropriate?

– Has a software integrity level been established, if
appropriate?

– Has a set of assurance cases been prepared?

– Have the assurance cases been reviewed and determined to
be appropriate and complete?

– Has an appropriate risk assessment been performed and
documented?

– Risk management plan

– Improvement plan

– Monitoring and control
report

– Risk action request

Task 3 of clause 5.3.4 states that the SQA function shall revise the SQAP in
response to project changes. A project is executed in an organization where pro-
cesses, such as configuration management, have been documented and implemented.
The SQAP must follow the organizational configuration management process when
revising and updating the SQAP. Usually, a SQAP will have a table, called a revision
or history table, listing the approval and revision information. The following text box
briefly describes the tasks when producing an updated version of a SQAP.

Revision of the SQAP

A revision of the SQAP may consist of the following tasks:

– identify and record, on the “Revisions table”, the modifications made to the sections
and paragraphs concerned;

13.5 Further Reading 539

– review and obtain approval of the new version of the SQAP;

– put the new version of SQAP under configuration management;

– distribute the new SQAP to all stakeholders (e.g., project participants, SQA, customer).

13.4 CONCLUSION

The SQAP is the cornerstone of any software project aiming at producing a quality
product for external or internal customers. The SQAP pulls together all quality con-
cerns of an organization, its policies, its people, its processes, and tools in producing
quality products while building a competitive software capability.

While supporting the development of quality products, a robust SQAP should
minimize avoidable rework. In Chapter 2, we presented the concept of cost of quality,
and in many chapters we have illustrated how SQA could help in reducing the cost
of rework. Hopefully, the following statement made by Dr. Robert Charette will no
longer be true for organizations that have implemented the SQA practices presented
in this book.

“Studies have shown that software specialists spend about 40 to 50 percent of their time
on avoidable rework rather than on what they call value-added work, which is basically
work that’s done right the first time.”

Dr. Robert Charette,
Why Software Fails

IEEE Spectrum, September 2005

13.5 FURTHER READING

Galin D. Software Quality: Concepts and Practice. Wiley-IEEE Computer Society Press,
Hoboken, New Jersey, 2017, 726 p.

Schulmeyer G. G. (Ed.). Handbook of Software Quality Assurance. 4th edition. Artec
House, Norwood, MA, 2008.

540 Chapter 13 Software Quality Assurance Plan

13.6 EXERCISES

13.1 Name five topics to be addressed in a SQAP.

13.2 Describe the review and acceptance of documents approach proposed to ensure quality.

13.3 Describe the process of acceptance of an acceptance test and how to use the categories
of defects to ensure quality of delivery.

13.4 How important is the description of the criticality of the software at the beginning of a
SQA plan?

13.5 Develop a checklist that will allow you to ensure that the SQA plan conforms to
IEEE 730.

13.6 What is the difference between process assurance and product assurance?

13.7 What could be the consequences of not having a SQA plan for your organization?

13.8 What could be the consequences of not requiring a SQA plan from your supplier?

Appendix 1

Software Engineering Code of
Ethics and Professional
Practice (Version 5.2)

Software Engineering Code of Ethics and Professional Practice (Version 5.2) as rec-
ommended by the IEEE-CS/ACM Joint Task Force on Software Engineering Ethics
and Professional Practices and jointly approved by the ACM and the IEEE-CS as the
standard for teaching and practicing software engineering.

PREAMBLE

Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment, and society at large. Software engineers are those
who contribute by direct participation or by teaching, to the analysis, specification,
design, development, certification, maintenance, and testing of software systems.
Because of their roles in developing software systems, software engineers have sig-
nificant opportunities to do good or cause harm, to enable others to do good or cause
harm, or to influence others to do good or cause harm. To ensure, as much as possi-
ble, that their efforts will be used for good, software engineers must commit them-
selves to making software engineering a beneficial and respected profession. In accor-
dance with that commitment, software engineers shall adhere to the following Code
of Ethics and Professional Practice.

The code contains eight principles related to the behavior of and decisions made
by professional software engineers, including practitioners, educators, managers,
supervisors, and policy makers, as well as trainees and students of the profession.
The principles identify the ethically responsible relationships in which individuals,
groups, and organizations participate and the primary obligations within these

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

541

542 Appendix 1 Software Engineering Code of Ethics and Professional Practice

relationships. The clauses of each principle are illustrations of some of the obliga-
tions included in these relationships. These obligations are founded in the software
engineer’s humanity, in special care owed to people affected by the work of software
engineers, and in the unique elements of the practice of software engineering. The
code prescribes these as obligations of anyone claiming to be or aspiring to be a
software engineer.

It is not intended that the individual parts of the code be used in isolation to
justify errors of omission or commission. The list of principles and clauses is not
exhaustive. The clauses should not be read as separating the acceptable from the unac-
ceptable in professional conduct in all practical situations. The code is not a simple
ethical algorithm that generates ethical decisions. In some situations, standards may
be in tension with each other or with standards from other sources. These situations
require the software engineer to use ethical judgment to act in a manner that is most
consistent with the spirit of the Code of Ethics and Professional Practice, given the
circumstances.

Ethical tensions can best be addressed by thoughtful consideration of funda-
mental principles, rather than blind reliance on detailed regulations. These princi-
ples should influence software engineers to consider broadly who is affected by their
work; to examine if they and their colleagues are treating other human beings with
due respect; to consider how the public, if reasonably well informed, would view
their decisions; to analyze how the least empowered will be affected by their deci-
sions; and to consider whether their acts would be judged worthy of the ideal profes-
sional working as a software engineer. In all these judgments, concern for the health,
safety, and welfare of the public is primary; that is, the “Public Interest” is central to
this code.

The dynamic and demanding context of software engineering requires a code
that is adaptable and relevant to new situations as they occur. However, even in this
generality, the code provides support for software engineers and managers of software
engineers who need to take positive action in a specific case by documenting the
ethical stance of the profession. The code provides an ethical foundation to which
individuals within teams and the team as a whole can appeal. The code helps to define
those actions that are ethically improper to request of a software engineer or teams
of software engineers.

The code is not simply for adjudicating the nature of questionable acts; it also
has an important educational function. As this code expresses the consensus of the
profession on ethical issues, it is a means to educate both the public and aspiring
professionals about the ethical obligations of all software engineers.

PRINCIPLES

Principle 1: Public: Software engineers shall act consistently with the public interest.
In particular, software engineers shall, as appropriate:

Appendix 1 Software Engineering Code of Ethics and Professional Practice 543

1.01. Accept full responsibility for their own work.

1.02. Moderate the interests of the software engineer, the employer, the client,
and the users with the public good.

1.03. Approve software only if they have a well-founded belief that it is safe,
meets specifications, passes appropriate tests, and does not diminish quality of
life, diminish privacy, or harm the environment. The ultimate effect of the work
should be to the public good.

1.04. Disclose to appropriate persons or authorities any actual or potential danger
to the user, the public, or the environment, that they reasonably believe to be
associated with software or related documents.

1.05. Cooperate in efforts to address matters of grave public concern caused by
software, its installation, maintenance, support, or documentation.

1.06. Be fair and avoid deception in all statements, particularly public ones, con-
cerning software or related documents, methods, and tools.

1.07. Consider issues of physical disabilities, allocation of resources, economic
disadvantage, and other factors that can diminish access to the benefits of soft-
ware.

1.08. Be encouraged to volunteer professional skills to good causes and to con-
tribute to public education concerning the discipline.

Principle 2: Client and Employer: Software engineers shall act in a manner that is in
the best interests of their client and employer, consistent with the public interest. In
particular, software engineers shall, as appropriate:

2.01. Provide service in their areas of competence, being honest, and forthright
about any limitations of their experience and education.

2.02. Not knowingly use software that is obtained or retained either illegally or
unethically.

2.03. Use the property of a client or employer only in ways properly authorized,
and with the client’s or employer’s knowledge and consent.

2.04. Ensure that any document upon which they rely has been approved, when
required, by someone authorized to approve it.

2.05. Keep private any confidential information gained in their professional
work, where such confidentiality is consistent with the public interest and con-
sistent with the law.

2.06. Identify, document, collect evidence, and report to the client or the
employer promptly if, in their opinion, a project is likely to fail, to prove too
expensive, to violate intellectual property law, or otherwise to be problematic.

2.07. Identify, document, and report significant issues of social concern, of which
they are aware, in software or related documents, to the employer or the client.

544 Appendix 1 Software Engineering Code of Ethics and Professional Practice

2.08. Accept no outside work detrimental to the work they perform for their pri-
mary employer.

2.09. Promote no interest adverse to their employer or client, unless a higher eth-
ical concern is being compromised; in that case, inform the employer or another
appropriate authority of the ethical concern.

Principle 3: Product: Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible. In particular, software
engineers shall, as appropriate:

3.01. Strive for high quality, acceptable cost, and a reasonable schedule, ensuring
significant tradeoffs are clear to and accepted by the employer and the client, and
are available for consideration by the user and the public.

3.02. Ensure proper and achievable goals and objectives for any project on which
they work or propose.

3.03. Identify, define, and address ethical, economic, cultural, legal, and environ-
mental issues related to work projects.

3.04. Ensure that they are qualified for any project on which they work or propose
to work, by an appropriate combination of education, training, and experience.

3.05. Ensure that an appropriate method is used for any project on which they
work or propose to work.

3.06. Work to follow professional standards, when available, that are most appro-
priate for the task at hand, departing from these only when ethically or technically
justified.

3.07. Strive to fully understand the specifications for software on which they
work.

3.08. Ensure that specifications for software on which they work have been well
documented, satisfy the users’ requirements, and have the appropriate approvals.

3.09. Ensure realistic quantitative estimates of cost, scheduling, personnel, qual-
ity, and outcomes on any project on which they work or propose to work and
provide an uncertainty assessment of these estimates.

3.10. Ensure adequate testing, debugging, and review of software and related
documents on which they work.

3.11. Ensure adequate documentation, including significant problems discovered
and solutions adopted, for any project on which they work.

3.12. Work to develop software and related documents that respect the privacy
of those who will be affected by that software.

3.13. Be careful to use only accurate data derived by ethical and lawful means,
and use it only in ways properly authorized.

Appendix 1 Software Engineering Code of Ethics and Professional Practice 545

3.14. Maintain the integrity of data, being sensitive to outdated or flawed occur-
rences.

3.15 Treat all forms of software maintenance with the same professionalism as
new development.

Principle 4: Judgment: Software engineers shall maintain integrity and independence
in their professional judgment. In particular, software engineers shall, as appropriate:

4.01. Temper all technical judgments by the need to support and maintain human
values.

4.02 Only endorse documents either prepared under their supervision or within
their areas of competence and with which they are in agreement.

4.03. Maintain professional objectivity with respect to any software or related
documents they are asked to evaluate.

4.04. Not engage in deceptive financial practices such as bribery, double billing,
or other improper financial practices.

4.05. Disclose to all concerned parties those conflicts of interest that cannot rea-
sonably be avoided or escaped.

4.06. Refuse to participate, as members or advisors, in a private, governmental
or professional body concerned with software related issues, in which they, their
employers or their clients have undisclosed potential conflicts of interest.

Principle 5: Management: Software engineering managers and leaders shall subscribe
to and promote an ethical approach to the management of software development and
maintenance. In particular, those managing or leading software engineers shall, as
appropriate:

5.01 Ensure good management for any project on which they work, including
effective procedures for promotion of quality and reduction of risk.

5.02. Ensure that software engineers are informed of standards before being held
to them.

5.03. Ensure that software engineers know the employer’s policies and proce-
dures for protecting passwords, files, and information that is confidential to the
employer or confidential to others.

5.04. Assign work only after taking into account appropriate contributions of
education and experience tempered with a desire to further that education and
experience.

5.05. Ensure realistic quantitative estimates of cost, scheduling, personnel, qual-
ity, and outcomes on any project on which they work or propose to work, and
provide an uncertainty assessment of these estimates.

5.06. Attract potential software engineers only by full and accurate description
of the conditions of employment.

546 Appendix 1 Software Engineering Code of Ethics and Professional Practice

5.07. Offer fair and just remuneration.

5.08. Not unjustly prevent someone from taking a position for which that person
is suitably qualified.

5.09. Ensure that there is a fair agreement concerning ownership of any software,
processes, research, writing, or other intellectual property to which a software
engineer has contributed.

5.10. Provide for due process in hearing charges of violation of an employer’s
policy or of this code.

5.11. Not ask a software engineer to do anything inconsistent with this code.

5.12. Not punish anyone for expressing ethical concerns about a project.

Principle 6: Profession: Software engineers shall advance the integrity and reputation
of the profession consistent with the public interest. In particular, software engineers
shall, as appropriate:

6.01. Help develop an organizational environment favorable to acting ethically.

6.02. Promote public knowledge of software engineering.

6.03. Extend software engineering knowledge by appropriate participation in
professional organizations, meetings, and publications.

6.04. Support, as members of a profession, other software engineers striving to
follow this code.

6.05. Not promote their own interest at the expense of the profession, client, or
employer.

6.06. Obey all laws governing their work, unless, in exceptional circumstances,
such compliance is inconsistent with the public interest.

6.07. Be accurate in stating the characteristics of software on which they work,
avoiding not only false claims but also claims that might reasonably be supposed
to be speculative, vacuous, deceptive, misleading, or doubtful.

6.08. Take responsibility for detecting, correcting, and reporting errors in soft-
ware and associated documents on which they work.

6.09. Ensure that clients, employers, and supervisors know of the software engi-
neer’s commitment to this code of ethics, and the subsequent ramifications of
such commitment.

6.10. Avoid associations with businesses and organizations which are in conflict
with this code.

6.11. Recognize that violations of this code are inconsistent with being a profes-
sional software engineer.

6.12. Express concerns to the people involved when significant violations of this
code are detected unless this is impossible, counter-productive, or dangerous.

Appendix 1 Software Engineering Code of Ethics and Professional Practice 547

6.13. Report significant violations of this code to appropriate authorities when it
is clear that consultation with people involved in these significant violations is
impossible, counter-productive, or dangerous.

Principle 7: Colleagues: Software engineers shall be fair to and supportive of their
colleagues. In particular, software engineers shall, as appropriate:

7.01. Encourage colleagues to adhere to this code.

7.02. Assist colleagues in professional development.

7.03. Credit fully the work of others and refrain from taking undue credit.

7.04. Review the work of others in an objective, candid, and properly documented
way.

7.05. Give a fair hearing to the opinions, concerns, or complaints of a colleague.

7.06. Assist colleagues in being fully aware of current standard work practices
including policies and procedures for protecting passwords, files and other con-
fidential information, and security measures in general.

7.07. Not unfairly intervene in the career of any colleague; however, concern for
the employer, the client, or public interest may compel software engineers, in
good faith, to question the competence of a colleague.

7.08. In situations outside of their own areas of competence, call upon the opin-
ions of other professionals who have competence in that area.

Principle 8: Self: Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to the practice
of the profession. In particular, software engineers shall continually endeavor to:

8.01. Further their knowledge of developments in the analysis, specification,
design, development, maintenance, and testing of software and related docu-
ments, together with the management of the development process.

8.02. Improve their ability to create safe, reliable, and useful quality software at
reasonable cost and within a reasonable time.

8.03. Improve their ability to produce accurate, informative, and well-written
documentation.

8.04. Improve their understanding of the software and related documents on
which they work and of the environment in which they will be used.

8.05. Improve their knowledge of relevant standards and the law governing the
software and related documents on which they work.

8.06 Improve their knowledge of this code, its interpretation, and its application
to their work.

8.07 Not give unfair treatment to anyone because of any irrelevant prejudices.

548 Appendix 1 Software Engineering Code of Ethics and Professional Practice

8.08. Not influence others to undertake any action that involves a breach of this
code.

8.09. Recognize that personal violations of this code are inconsistent with being
a professional software engineer.

This code was developed by the IEEE-CS/ACM joint task force on Software
Engineering Ethics and Professional Practices (SEEPP):

Executive Committee: Donald Gotterbarn (Chair), Keith Miller, and Simon
Rogerson;

Members: Steve Barber, Peter Barnes, Ilene Burnstein, Michael Davis, Amr El-
Kadi, N. Ben Fairweather, Milton Fulghum, N. Jayaram, Tom Jewett, Mark Kanko,
Ernie Kallman, Duncan Langford, Joyce Currie Little, Ed Mechler, Manuel J. Nor-
man, Douglas Phillips, Peter Ron Prinzivalli, Patrick Sullivan, John Weckert, Vivian
Weil, S. Weisband, and Laurie Honour Werth.

©1999 by the Institute of Electrical and Electronics Engineers, Inc. and the Asso-
ciation for Computing Machinery, Inc.

This code may be published without permission as long as it is not changed in
any way and it carries the copyright notice.

Glossary – Abbreviations – Acronyms

Acceptance Test (ISO 2382-20) The test of a system or functional unit usually performed by
the purchaser on his premises after installation with the participation of the vendor to ensure
that the contractual requirements are met.

Acquirer (ISO 12207) Stakeholder that acquires or procures a product or service from a sup-
plier.

Note: The acquirer could be one of the following: buyer, customer, owner, or purchaser.

Agreement (ISO 15288) Mutual acknowledgement of terms and conditions under which a
working relationship is conducted.

Alpha testing (ISO 24765) First stage of testing before a product is considered ready for com-
mercial or operational use (cf. beta testing).

Note: Often performed only by users within the organization developing the software.

Assurance case (ISO 15026-1) A reasoned, auditable artifact created that supports the con-
tention that its top-level claim (or set of claims), is satisfied, including systematic argumen-
tation and its underlying evidence and explicit assumptions that support the claim(s).

Note 1 to entry: An assurance case contains the following and their relationships:

– one or more claims about properties;

– arguments that logically link the evidence and any assumptions to the claim(s);

– a body of evidence and possibly assumptions supporting these arguments for the
claim(s);

– justification of the choice of top-level claim and the method of reasoning.

Audit

1) An independent examination of a software product, software process, or set of soft-
ware processes performed by a third party to assess compliance with specifications,
standards, contractual agreements, or other criteria (IEEE 1028).

Note: An audit should result in a clear indication of whether the audit criteria have been met.

2) Independent examination of a work product or set of work products to assess com-
pliance with specifications, standards, contractual agreements, or other criteria (ISO
12207).

3) Systematic, independent, and documented process for obtaining audit evidence and
evaluating it objectively to determine the extent to which the audit criteria are fulfilled.

Note 1: Internal audits, sometimes called first party audits, are conducted by the organization
itself, or on its behalf, for management review and other internal purposes (e.g., to confirm
the effectiveness of the management system or to obtain information for the improvement

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

555

556 Glossary – Abbreviations – Acronyms

of the management system). Internal audits can form the basis for an organization’s self-
declaration of conformity. In many cases, particularly in small organizations, independence
can be demonstrated by the freedom from responsibility for the activity being audited or
freedom from bias and conflict of interest.

Note 2: External audits include second- and third-party audits. Second-party audits are con-
ducted by parties having an interest in the organization, such as customers, or by other
persons on their behalf. Third-party audits are conducted by independent auditing organi-
zations, such as regulators or those providing certification.

Note 3: When two or more management systems of different disciplines (e.g., quality, envi-
ronmental, occupational health, and safety) are audited together, this is termed a combined
audit.

Note 4: When two or more auditing organizations cooperate to audit a single auditee, this
is termed a joint audit.

4) An objective examination of a work product or set of work products against specific
criteria (e.g., requirements). (See also “objectively evaluate.”) This is a term used in
several ways in CMMI®, including configuration audits and process compliance audits
(CMMI-DEV).

Audit criteria (ISO 19011) Set of policies, procedures, or requirements used as a reference
against which audit evidence is compared.

Note: If the audit criteria are legal (including statutory or regulatory) requirements, the terms
“compliant” or “noncompliant” are often used in an audit finding.

Audit evidence (ISO 19011) Records, statements of fact, or other information that are relevant
to the audit criteria and verifiable.

Note: Audit evidence can be qualitative or quantitative.

Audit findings (ISO 19011) Results of the evaluation of the collected audit evidence against
audit criteria.

Note 1: Audit findings indicate conformity or nonconformity.

Note 2: Audit findings can lead to the identification of opportunities for improvement or
recording good practices.

Note 3: If the audit criteria are selected from legal or other requirements, the audit finding
is termed compliance or non-compliance.

Base measure (ISO 15939) Measure defined in terms of an attribute and the method for quan-
tifying it.

Note: A base measure is functionally independent of other measures.

Baseline (ISO 12207) Formally approved version of a configuration item, regardless of media,
formally designated and fixed at a specific time during the configuration item’s life cycle.

Beta testing (ISO 24765) Second stage of testing when a product is in limited production use
(cf. alpha testing).

Note: often performed by a client or customer.

Bidirectional traceability (CMMI-DEV) An association among two or more logical entities
that is discernable in either direction (i.e., to and from an entity). (See also “requirements
traceability” and “traceability.”)

Glossary – Abbreviations – Acronyms 557

Black box (ISO 24765)

1) A system or component whose inputs, outputs, and general function are known but
whose contents or implementation are unknown or irrelevant.

2) Pertaining to an approach that treats a system or component whose inputs, outputs,
and general function are known but whose contents or implementation are unknown
or irrelevant (cf. glass box).

Brainstorming (PMBOK® Guide) A general data gathering and creativity technique that can
be used to identify risks, ideas, or solutions to issues by using a group of team members or
subject-matter experts.

Branch (ISO 24765)

1) A computer program construct in which one of two or more alternative sets of program
statements is selected for execution.

2) A point in a computer program at which one of two or more alternative sets of program
statements is selected for execution.

Note: Every branch is identified by a tag. Often, a branch identifies the file versions that have
been or will be released as a product release. May denote unbundling of arrow meaning, that
is, the separation of object types from an object type set. Also refers to an arrow segment
into which a root arrow segment has been divided.

Business model (Wikipedia) A business model describes the rationale of how an organization
creates, delivers, and captures value (economic, social, or other forms of value).

The essence of a business model is that it defines the manner by which the business
enterprise delivers value to customers, entices customers to pay for value, and converts
those payments to profit: it thus reflects management’s hypothesis about what customers
want, how they want it, and how an enterprise can organize to best meet those needs, get
paid for doing so, and make a profit.

Catastrophic (IEEE 1012) Loss of human life, complete mission failure, loss of system secu-
rity and safety, or extensive financial or social loss.

Change control board (CCB) (PMBOK® Guide) A formally chartered group responsi-
ble for reviewing, evaluating, approving, delaying, or rejecting changes to the project,
and for recording and communicating such decisions. See also Configuration Control
Board.

Change control procedure (ISO 24765) Actions taken to identify, document, review, and
authorize changes to a software or documentation product that is being developed.

Note: The procedures ensure that the validity of changes is confirmed, that the effects on
other items are examined, and that those people concerned with the development are notified
of the changes.

Change management (ISO 24765) Judicious use of means to effect a change, or a proposed
change, to a product or service.

Checklist [GIL 93] A specialized set of questions designed to help checkers find more defects,
and in particular, more significant defects. Checklists concentrate on major defects. A
checklist should be no more than a single page per subject area. Checklist questions inter-
pret specified rules.

558 Glossary – Abbreviations – Acronyms

Commit (ISO 24765) To integrate the changes made to a developer’s private view of the source
code into a branch accessible through the version control system’s repository.

Commit privileges (ISO 24765) A person’s authority to commit changes.

Note: Sometimes privileges are associated with a specific part of the product (e.g., artwork
or documentation) or a specific branch.

Commit window (ISO 24765) A period during which commits are allowed for a specific
branch.

Note: In some development environments, commit windows for a maintenance branch
might only open for short periods a few times a year.

Concept of operations (ConOps) document (IEEE 1362) A user-oriented document that
describes a system’s operational characteristics from the end-user’s viewpoint.

Configuration (ISO 24765) The functional and physical characteristics of hardware or soft-
ware as set forth in technical documentation or achieved in a product.

Configuration audit (CMMI-DEV) An audit conducted to verify that a configuration item or
a collection of configuration items that make up a baseline conforms to a specified standard
or requirement. (See also “audit” and “configuration item.”)

Configuration baseline (ISO 24765) Configuration information formally designated at a spe-
cific time during a product’s or product component’s life.

Note: Configuration baselines, plus approved changes from those baselines, constitute the
current configuration information.

Configuration control (ISO 24765) An element of configuration management, consisting of
the evaluation, coordination, approval or disapproval, and implementation of changes to
configuration items after formal establishment of their configuration identification. Syn-
onym: change control.

Configuration control board (CCB) (ISO 24765) A group of people responsible for eval-
uating and approving or disapproving proposed changes to configuration items, and for
ensuring implementation of approved changes. See also Change Control Board.

Configuration identification (ISO 24765)

1) An element of configuration management, consisting of selecting the configuration
items for a system and recording their functional and physical characteristics in tech-
nical documentation.

2) The current approved technical documentation for a configuration item as set forth in
specifications, drawings, associated lists, and documents referenced therein.

Configuration item (CI) (ISO 12207) Item or aggregation of hardware, software, or both, that
is designated for configuration management and treated as a single entity in the configura-
tion management process.

Configuration management (CM)

1) A discipline applying technical and administrative direction and surveillance to:
identify and document the functional and physical characteristics of a configura-
tion item, control changes to those characteristics, record and report change process-
ing and implementation status, verify compliance with specified requirements (ISO
24765).

Glossary – Abbreviations – Acronyms 559

2) A discipline applying technical and administrative direction and surveillance to (1)
identify and document the functional and physical characteristics of a configuration
item, (2) control changes to those characteristics, (3) record and report change process-
ing and implementation status, and (4) verify compliance with specified requirements
(CMMI-DEV).

Configuration status accounting (ISO 24765) An element of configuration management, con-
sisting of the recording and reporting of information needed to manage a configuration
effectively.

Note: This information includes a listing of the approved configuration identification, the
status of proposed changes to the configuration, and the implementation status of approved
changes.

Conflict (ISO 24765) A change in one version of a file that cannot be reconciled with the
version of the file to which it is applied.

Note: can occur when versions from different branches are merged or when two committers
work concurrently on the same file.

Conformity (ISO 9000) Fulfilment of a requirement.

Contract (ISO 12207) See Agreement.

Corrective action (PMBOK® Guide) An intentional activity that realigns the performance of
the project work with the project management plan.

Critical (IEEE 1012) Major and permanent injury, partial loss of mission, major system dam-
age, or major financial or social loss.

Critical software (IEEE 610.12) Software whose failure could have an impact on safety, or
could cause large financial or social loss.

Criticality (IEEE 1012) The degree of impact that a requirement, module, error, fault, failure,
or other item has on the development or operation of a system.

Deactivated code (DO-178) Executable Object Code (or data) that is traceable to a require-
ment and, by design, is either (a) not intended to be executed (code) or used (data), for
example, a part of a previously developed software component such as unused legacy code,
unused library functions, or future growth code; or (b) is only executed (code) or used
(data) in certain configurations of the target computer environment, for example, code that
is enabled by a hardware pin selection or software programmed options. The following
examples are often mistakenly categorized as deactivated code but should be identified as
required for implementation of the design/requirements: defensive programming structures
inserted for robustness, including compiler-inserted object code for range and array index
checks, error or exception handling routines, bounds and reasonableness checking, queuing
controls, and time stamps.

Dead code (DO-178) Executable Object Code (or data) which exists as a result of a software
development error but cannot be executed (code) or used (data) in any operational con-
figuration of the target computer environment. It is not traceable to a system or software
requirement. The following exceptions are often mistakenly categorized as dead code but
are necessary for implementation of the requirements/design: embedded identifiers, defen-
sive programming structures to improve robustness, and deactivated code such as unused
library functions.

560 Glossary – Abbreviations – Acronyms

Debug (ISO 24765)

1) To detect, locate, and correct faults in a computer program.

2) To detect, locate, and eliminate errors in programs.

Defect

1) A problem which, if not corrected, could cause an application to either fail or to pro-
duce incorrect results (ISO 20926).

2) An imperfection or deficiency in a project component where that component does not
meet its requirements or specifications and needs to be either repaired or replaced
(PMBOK® Guide).

3) A generic term that can refer to either a fault (cause) or a failure (effect) (IEEE
982.1).

Derived measure (ISO 15939) Measure that is defined as a function of two or more values of
base measures.

Development testing

1) Formal or informal testing conducted during the development of a system or compo-
nent, usually in the development environment by the developer (ISO 24765).

2) Testing conducted to establish whether a new software product or software-based sys-
tem (or components of it) satisfies its criteria. The criteria will vary based on the level
of test being performed (IEEE 829).

Effectiveness (ISO 9000) Extent to which planned activities are realized and planned results
achieved.

Efficiency

1) The degree to which a system or component performs its designated functions with
minimum consumption of resources (ISO 24765).

2) Relationship between the result achieved and the resources used (ISO 9000).

Effort (PMBOK® Guide) The number of labor units required to complete a schedule activity
or work breakdown structure component. Usually expressed in hours, days, or weeks.

Error (ISO 24765)

1) A human action that produces an incorrect result, such as software containing a fault.

2) An incorrect step, process, or data definition.

3) An incorrect result.

4) The difference between a computed, observed, or measured value or condition and the
true, specified, or theoretically correct value or condition.

Evaluation (ISO 12207) Systematic determination of the extent to which an entity meets its
specified criteria.

Exit criteria (CMMI-DEV) States of being that must be present before an effort can end suc-
cessfully.

Glossary – Abbreviations – Acronyms 561

Failure

1) Termination of the ability of a product to perform a required function or its inability
to perform within previously specified limits (ISO 25000).

2) An event in which a system or system component does not perform a required function
within specified limits (ISO 24765).

Financial independence (IEEE 1012) This requires that control of the IV&V budget be vested
in an organization independent of the development organization. This independence pre-
vents situations where the IV&V effort cannot complete its analysis or test or deliver timely
results because funds have been diverted or adverse financial pressures or influences have
been exerted.

Firmware

1) Combination of a hardware device and computer instructions or computer data that
reside as read-only software on the hardware device (IEEE 1012).

2) An ordered set of instructions and associated data stored in a way that is functionally
independent of main storage, usually in a ROM (ISO 2382-1).

Note 1: The software cannot be readily modified under program control (ISO 24765).
Note 2: This term is sometimes used to refer only to the hardware device or only to the
computer instructions or data, but these meanings are deprecated (IEEE 1012).
Note 3: The confusion surrounding this term has led some to suggest that it be avoided
altogether (IEEE 1012).

Functional configuration audit (FCA) (ISO 24765) An audit conducted to verify that the
development of a configuration item has been completed satisfactorily, that the item has
achieved the performance and functional characteristics specified in the functional or allo-
cated configuration identification, and that its operational and support documents are com-
plete and satisfactory.

Functional requirement (IEEE 1220) A statement that identifies what a product or process
must accomplish to produce required behavior and/or results.

Glass box (ISO 24765)

1) A system or component whose internal contents or implementation are known.

2) Pertaining to an approach that treats a system or component as in (1).

Synonym: white box.

Hazard (IEEE 1012)

1) An intrinsic property or condition that has the potential to cause harm or damage.

2) A source of potential harm or a situation with a potential for harm in terms of
human injury, damage to health, property, or the environment, or some combination of
these.

Independent (ISO 24765) Performed by an organization free from control by the supplier,
developer, operator, or maintainer.

Independent verification and validation (IV&V) (ISO 24765) Verification and validation per-
formed by an organization that is technically, managerially, and financially independent of
the development organization.

562 Glossary – Abbreviations – Acronyms

Indicator (ISO 15939) Measure that provides an estimate or evaluation of specified attributes
derived from a model with respect to defined information needs.

Information Management Process (ISO 15289) The documentation management process
shall include these activities:

1) identify the documents to be produced by the organization, service, process, or project;

2) specify the content and purpose of all documents and plan and schedule their produc-
tion;

3) identify the standards to be applied for development of documents;

4) develop and publish all documents in accordance with identified standards and in
accordance with nominated plans;

5) maintain all documents in accordance with specified criteria.

Integration testing (IEEE 1012) Testing in which software components, hardware compo-
nents, or both are combined and tested to evaluate the interaction between them.

Integrity level (IEEE 1012) A value representing project-unique characteristics (e.g. complex-
ity, criticality, risk, safety level, security level, desired performance, and reliability) that
define the importance of the system, software, or hardware to the user.

Integrity level scheme (IEEE 829) A set of system characteristics (such as complexity,
risk, safety level, security level, desired performance, reliability, and/or cost) selected as
important to stakeholders, and arranged into discrete levels of performance or compliance
(integrity levels), to help define the level of quality control to be applied in developing
and/or delivering the software.

Internal audit (ISO 9001) The organization shall conduct internal audits at planned intervals
to determine whether the quality management system:

1) conforms to the planned arrangements to the requirements of this International Stan-
dard and to the quality management system requirements established by the organiza-
tion;

2) is effectively implemented and maintained.

An audit programme shall be planned, taking into consideration the status and impor-
tance of the processes and areas to be audited, as well as the results of previous audits. The
audit criteria, scope, frequency, and methods shall be defined. The selection of auditors and
conduct of audits shall ensure objectivity and impartiality of the audit process. Auditors
shall not audit their own work.

A documented procedure shall be established to define the responsibilities and require-
ments for planning and conducting audits, establishing records and reporting results.

Records of the audits and their results shall be maintained.
The management responsible for the area being audited shall ensure that any neces-

sary corrections and corrective actions are taken without undue delay to eliminate detected
nonconformities and their causes.

Follow-up activities shall include the verification of the actions taken and the reporting
of verification results.

Issue (PMBOK® Guide) A point or matter in question or in dispute, or a point or matter that is
not settled and is under discussion or over which there are opposing views or disagreements.

Glossary – Abbreviations – Acronyms 563

Lessons learned (PMBOK® Guide) The knowledge gained during a project that shows how
project events were addressed or should be addressed in the future with the purpose of
improving future performance.

Life cycle

1) Evolution of a system, product, service, project or other human-made entity from con-
ception through retirement (ISO 12207);

2) The system or product evolution initiated by a perceived stakeholder need through the
disposal of the products (IEEE 1220).

Life cycle processes (IEEE 1012) A set of interrelated or interacting activities that result in
the development or assessment of system, software, or hardware products. Each activity
consists of tasks. The life cycle processes may overlap one another. For verification and val-
idation (V&V) purposes, no life cycle process is concluded until its development products
are verified and validated according to the defined tasks in the verification and validation
plan (VVP).

Managerial independence (IEEE 1012) This requires that the responsibility for the IV&V
effort be vested in an organization separate from the development and program manage-
ment organizations. Managerial independence also means that the IV&V effort indepen-
dently selects the segments of the software, hardware, and system to analyze and test,
chooses the IV&V techniques, defines the schedule of IV&V activities, and selects the
specific technical issues and problems to act on. The IV&V effort provides its findings in a
timely fashion simultaneously to both the development and program management organi-
zations. The IV&V effort is allowed to submit to program management the IV&V results,
anomalies, and findings without any restrictions (e.g., without requiring prior approval
from the development group) or adverse pressures, direct or indirect, from the development
group.

Marginal (IEEE 1012) Severe injury or illness, degradation of secondary mission, or some
financial or social loss.

Master library (ISO 24765) A software library containing master copies of software and docu-
mentation from which working copies can be made for distribution and use. (cf. production
library, software development library, software repository, system library.)

Measure (noun) (ISO 15939) Variable to which a value is assigned as the result of measure-
ment.

Note: The plural form “measures” is used to refer collectively to base measures, derived
measures and indicators.

Measure (verb) (ISO 15939) Make a measurement.

Measurement function (ISO 15939) Algorithm or calculation performed to combine two or
more base measures.

Measurement information model (ISO 15939) A structure linking information needs to the
relevant entities and attributes of concern. Entities include processes, products, projects,
and resources. The measurement information model describes how the relevant attributes
are quantified and converted to indicators that provide a basis for decision making.

Measurement method (ISO 15939) Logical sequence of operations, described generically,
used in quantifying an attribute with respect to a specified scale.

564 Glossary – Abbreviations – Acronyms

Note: The type of measurement method depends on the nature of the operations used to
quantify an attribute. Two types can be distinguished:

1) subjective: quantification involving human judgment;

2) objective: quantification based on numerical rules.

Measurement process (ISO 15939) Process for establishing, planning, performing, and eval-
uating measurement within an overall project, enterprise, or organizational measurement
structure.

Measurement process owner (ISO 15939) Individual or organization responsible for the mea-
surement process.

Medical device (ISO 13485) Instrument, apparatus, implement, machine, appliance, implant,
reagent for in vitro use, software, material, or other similar or related article, intended by the
manufacturer to be used, alone or in combination, for human beings for one or more of the
specific purpose(s) of: diagnosis, prevention, monitoring, treatment, or alleviation of dis-
ease; diagnosis, monitoring, treatment, alleviation of or compensation for an injury; investi-
gation, replacement, modification, or support of the anatomy or of a physiological process;
supporting or sustaining life; control of conception; disinfection of medical devices; pro-
viding information for medical purposes by means of in vitro examination of specimens
derived from the human body; and which does not achieve its primary intended action in
or on the human body by pharmacological, immunological, or metabolic means, but which
may be assisted in its function by such means.

Microcode (IEEE 1012) A collection of microinstructions, comprising part of, all of, or a set
of microprograms.

Microprogram (ISO 24765) A sequence of instructions, called microinstructions, specifying
the basic operations needed to carry out a machine language instruction.

Negligible (IEEE 1012) Minor injury or illness, minor impact on system performance, or oper-
ator inconvenience.

Nonconformity (ISO 9000) Non-fulfilment of a requirement.

Nonfunctional requirement (ISO 24765) A software requirement that describes not what
the software will do but how the software will do it. Synonym: design constraints, non-
functional requirement. (cf. functional requirement.)

Example: software performance requirements, software external interface requirements,
software design constraints, and software quality attributes. Non-functional requirements
are sometimes difficult to test, so they are usually evaluated subjectively.

Objectively evaluate (CMMI-DEV) To review activities and work products against criteria
that minimize subjectivity and bias by the reviewer (See also “audit.”). An example of an
objective evaluation is an audit against requirements, standards, or procedures by an inde-
pendent quality assurance function.

Operational testing (IEEE 829) Testing conducted to evaluate a system or component in its
operational environment.

Opportunity (PMBOK® Guide) A risk that would have a positive effect on one or more project
objectives.

Organizational policy (CMMI-DEV) A guiding principle typically established by senior man-
agement that is adopted by an organization to influence and determine decisions.

Glossary – Abbreviations – Acronyms 565

Organization’s process asset library (CMMI-DEV) A library of information used to store
and make process assets available that are useful to those who are defining, implement-
ing, and managing processes in the organization. This library contains process assets
that include process related documentation such as policies, defined processes, checklists,
lessons learned documents, templates, standards, procedures, plans, and training materials.

Path (ISO 24765) In software engineering, a sequence of instructions that may be performed
in the execution of a computer program.

Personal Process [SEI 09] A defined set of steps or activities that guide individuals in doing
their personal work. It is usually based on personal experience and may be developed
entirely from scratch or may be based on another established process and modified accord-
ing to personal experience. A personal process provides individuals with a framework for
improving their work and for consistently doing high-quality work.

Physical configuration audit (PCA) (ISO 24765) An audit conducted to verify that a config-
uration item, as built, conforms to the technical documentation that defines it.

Policy (ISO 24765)

1) A set of rules related to a particular purpose.

2) Clear and measurable statements of preferred direction and behavior to condition the
decisions made within an organization.

Note: A rule can be expressed as an obligation, an authorization, a permission, or a prohi-
bition. Not every policy is a constraint. Some policies represent an empowerment.

Post-mortem [DIN 05] A collective learning activity that can be organized for projects either
when they end a phase or are terminated. The main motivation is to reflect on what happened
in the project in order to improve future practice for the individuals that have participated
in the project and for the organization as a whole. The physical outcome of a meeting is a
post-mortem report.

Preventive action (PMBOK® Guide) An intentional activity that ensures the future perfor-
mance of the project work is aligned with the project management plan.

Procedure

1) Ordered series of steps that specify how to perform a task (ISO 26514).

2) Specified way to carry out an activity or a process (ISO 9000).

Note 1: Procedures can be documented or not (ISO 9000).

Process (ISO 9000) Set of interrelated or interacting activities that use inputs to deliver an
intended result.

Process approach (ISO 9000) Any activity, or set of activities, that uses resources to transform
inputs to outputs can be considered as a process.

For organizations to function effectively, they have to identify and manage numerous
interrelated and interacting processes. Often, the output from one process will directly
form the input into the next process. The systematic identification and management of the
processes employed within an organization and particularly the interactions between such
processes is referred to as the “process approach.”

The intent of this International Standard is to encourage the adoption of the process
approach to manage an organization.

566 Glossary – Abbreviations – Acronyms

Process asset (CMMI-DEV) Anything the organization considers useful in attaining the goals
of a process area.

Process description (ISO 24765) Documented expression of a set of activities performed to
achieve a given purpose.

Note: A process description provides an operational definition of the major components of a
process. The description specifies, in a complete, precise, and verifiable manner, the require-
ments, design, behavior, or other characteristics of a process. It also may include procedures
for determining whether these provisions have been satisfied. Process descriptions can be
found at the activity, project, or organizational level.

Process owner (ISO 24765) Person (or team) responsible for defining and maintaining a pro-
cess.

Product

1) Output of an organization that can be produced without any transaction taking place
between the organization and the customer (ISO 9000).

Note: Hardware is tangible and its amount is a countable characteristic (e.g., tyres).
Processed materials are tangible and their amount is a continuous characteristic (e.g., fuel
and soft drinks). Hardware and processed materials are often referred to as goods. Software
consists of information regardless of delivery medium (e.g., computer programme, mobile
phone app, instruction manual, dictionary content, musical composition copyright, driver’s
license).

2) An artifact that is produced, is quantifiable, and can be either an end item in itself or a
component item (PMBOK® Guide).

Production library (ISO 24765) A software library containing software approved for current
operational use.

Program librarian (ISO 24765) The person responsible for establishing, controlling, and
maintaining a software development library.

Prototype (ISO 15910)

1) A preliminary type, form, or instance of a system that serves as a model for later stages
or for the final, complete version of the system;

2) Model or preliminary implementation of a piece of software suitable for the evaluation
of system design, performance or production potential, or for the better understanding
of the software requirements.

Prototyping (ISO 24765) A hardware and software development technique in which a prelimi-
nary version of part or all of the hardware or software is developed to permit user feedback,
determine feasibility, or investigate timing or other issues in support of the development
process.

Qualification (ISO 12207) Process of demonstrating whether an entity is capable of fulfilling
specified requirements.

Qualification testing (ISO 12207) Testing, conducted by the developer and witnessed by the
acquirer (as appropriate), to demonstrate that a software product meets its specifications
and is ready for use in its target environment or integration with its containing system.

Glossary – Abbreviations – Acronyms 567

Quality (ISO 9000) Degree to which a set of inherent characteristics of an object fulfills
requirements.

Note 1: The term “quality” can be used with adjectives such as poor, good or excellent.
Note 2: “Inherent.” as opposed to “assigned,” means existing in the object.

Quality assurance (QA)

1) A planned and systematic pattern of all actions necessary to provide adequate con-
fidence that an item or product conforms to established technical requirements (ISO
24765).

2) A set of activities designed to evaluate the process by which products are developed
or manufactured (ISO 24765).

3) Part of quality management focused on providing confidence that quality requirements
will be fulfilled (ISO 12207).

Quality audits (PMBOK® Guide) A quality audit is a structured, independent process to deter-
mine if project activities comply with organizational and project policies, processes, and
procedures.

Quality model (ISO 25000) Defined set of characteristics, and of relationships between them,
which provides a framework for specifying quality requirements and evaluating quality.

Quality policy (ISO 9000) Intentions and direction of an organization as formally expressed
by top management related to quality.
Note 1: Generally, the quality policy is consistent with the overall policy of the organization,
can be aligned with the organization’s vision and mission and provides a framework for the
setting of quality objectives.
Note 2: Quality management principles presented in this International Standard can form a
basis for the establishment of a quality policy.

Release

1) A delivered version of an application which may include all or part of an application
(ISO 24765).

2) Particular version of a configuration item that is made available for a specific purpose
(e.g., test release) (ISO 12207).

Request for information (RFI) (PMBOK® Guide) A type of procurement document whereby
the buyer requests a potential seller to provide various pieces of information related to a
product or service or seller capability.

Request for proposal (RFP) or Tender (ISO 12207) Document used by the acquirer as the
means to announce its intention to potential bidders to acquire a specified system, software
product, or software service.

Request for proposal (RFP) (PMBOK® Guide) A type of procurement document used to
request proposals from prospective sellers of products or services. In some application
areas, it may have a narrower or more specific meaning.

Request for quotation (RFQ) (PMBOK® Guide) A type of procurement document used to
request price quotations from prospective sellers of common or standard products or ser-
vices. Sometimes used in place of request for proposal and, in some application areas, it
may have a narrower or more specific meaning.

568 Glossary – Abbreviations – Acronyms

Requirements traceability (CMMI-DEV) A discernable association between requirements
and related requirements, implementations, and verifications.

Reusable product (IEEE 1012) A system, software, or hardware product developed for one
use but having other uses, or one developed specifically to be usable on multiple projects
or in multiple roles on one project. Examples include, but are not limited to, commer-
cial off-the-shelf (COTS) software products, acquirer-furnished software products, soft-
ware products in reuse libraries, and preexisting developer software products. Each use may
include all or part of the software product and may involve its modification. This term can
be applied to any software product (e.g., requirements, architectures), not just to software
itself.

Reuse (ISO 24765) The use of an asset in the solution of different problems.

Review

1) A process or meeting during which a work product, or set of work products, is pre-
sented to project personnel, managers, users, customers, or other interested parties for
comment or approval (ISO 24765).

2) A process or meeting during which a software product, set of software products,
or a software process is presented to project personnel, managers, users, customers,
user representatives, auditors or other interested parties for examination, comment, or
approval (IEEE 1028).

Risk

1) The combination of the probability of an event and its consequence (ISO 16085).

Note 1: The term “risk” is generally used only when there is at least the possibility of
negative consequences.
Note 2: In some situations, risk arises from the possibility of deviation from the expected
outcome or event.

2) An uncertain event or condition that, if it occurs, has a positive or negative effect on
one or more project objectives (PMBOK® Guide).

Risk action request (ISO 16085) The recommended treatment alternatives and supporting
information for one or more risks determined to be above a risk threshold.

Risk management plan (ISO 16085) A description of how the elements and resources of the
risk management process will be implemented within an organization or project.

Risk management process (ISO 16085) A continuous process for systematically identifying,
analyzing, treating, and monitoring risk throughout the life cycle of a product or service.

Risk mitigation

1) A course of action taken to reduce the probability of and potential loss from a risk
factor (ISO 24765).

2) A risk response strategy whereby the project team acts to reduce the probability of
occurrence or impact of a risk (PMBOK® Guide).

Risk profile (ISO 16085) A chronological record of a risk’s current and historical risk state
information.

Glossary – Abbreviations – Acronyms 569

Risk state (ISO 16085) The current project risk information relating to an individual risk.

Note: The information concerning an individual risk may include the current description,
causes, probability, consequences, estimation scales, confidence of the estimates, treatment,
threshold, and an estimate of when the risk will reach its threshold.

Risk threshold (ISO 16085) A condition that triggers some stakeholder action.

Note: Different risk thresholds may be defined for each risk, risk category, or combination
of risks based upon differing risk criteria.

Risk treatment (ISO 16085) The process of selection and implementation of measures to mod-
ify risk.

Note 1: The term “risk treatment” is sometimes used for the measures themselves.
Note 2: Risk treatment measures can include avoiding, optimizing, transferring or retaining
risk.

Security branch (ISO 24765) A branch, created at the time of a release, to which only security
commits are made.

Service Management System (SMS) (ISO 20000-1) Management system to direct and control
the service management activities of the service provider.

Note 1: A management system is a set of interrelated or interacting elements to establish
policy and objectives and to achieve those objectives.
Note 2: The SMS includes all service management policies, objectives, plans, processes,
documentation, and resources required for the design, transition, delivery, and improvement
of services and to fulfill the requirements in this part of ISO/IEC 20000.
Note 3: Adapted from the definition of “quality management system” in ISO 9000:2005.

Software (ISO 24765) All or part of the programs, procedures, rules, and associated documen-
tation of an information processing system. Example: command files, job control language.

Note: includes firmware, documentation, data, and execution control statements.

Software development library (ISO 24765) A software library containing computer read-
able and human readable information relevant to a software development effort. Synonym:
project library, program support library.

Software engineering (ISO 24765) The systematic application of scientific and technological
knowledge, methods, and experience to the design, implementation, testing, and documen-
tation of software.

Software library (ISO 24765) A controlled collection of software and related documentation
designed to aid in software development, use, or maintenance.

Software Package (AQAP 2006) A software package is already developed and usable as is
or after adaptation. This type of software can be designated as reusable software, software
provided by the state, or commercial software, depending on its origin.

Software quality (ISO 25000) Capability of software product to satisfy stated and implied
needs when used under specified conditions.

Software quality assurance (IEEE 730) A set of activities that define and assess the ade-
quacy of software processes to provide evidence that establishes confidence that the soft-
ware processes are appropriate for and produce software products of suitable quality for
their intended purposes. A key attribute of SQA is the objectivity of the SQA function
with respect to the project. The SQA function may also be organizationally independent

570 Glossary – Abbreviations – Acronyms

of the project; that is, free from technical, managerial, and financial pressures from the
project.

Software repository (ISO 24765) A software library providing permanent, archival storage for
software and related documentation.

Examples include inadequate staffing levels, insufficient resources, and lack of training.
Also included in this section are actions taken to mitigate identified project risks.

Stable branch (ISO 24765) A branch where stability-disrupting changes are discouraged.

Note: the branch used for releasing the product’s stable production version.

Staff-hour (ISO 24765) An hour of effort expended by a member of the staff.

Statement of work (SOW) (ISO 12207) Document used by the acquirer to describe and specify
the tasks to be performed under the contract.

Supplier (ISO 12207) Organization or an individual that enters into an agreement with the
acquirer for the supply of a product or service.

Note 1: Other terms commonly used for supplier are contractor, producer, seller, or vendor.
Note 2: The acquirer and the supplier sometimes are part of the same organization.

Synchronize (ISO 24765)

1) To pull the changes made in a parent branch into its (evolving) child (e.g., feature)
branch.

2) To update a view with the current version of the files in its corresponding branch.

System (ISO 15288) Combination of interacting elements organized to achieve one or more
stated purposes.

System library (ISO 24765) A software library containing system-resident software that can
be accessed for use or incorporated into other programs by reference.

Systems integration testing (IEEE 829) Testing conducted on multiple complete, integrated
systems to evaluate their ability to communicate successfully with each other and to meet
the overall integrated systems’ specified requirements.

Tag (ISO 24765) A symbolic name assigned to a specific release or a branch.

Note: provides developers and end-users with a unique reference to the code base they are
working with.

Technical independence (IEEE 1012) Technical independence requires the V&V effort to use
personnel who are not involved in the development of the system or its elements. The IV&V
effort should formulate its own understanding of the problem and how the proposed system
is solving the problem. Technical independence (“fresh viewpoint”) is an important method
to detect subtle errors overlooked by those too close to the solution.

For system tools, technical independence means that the IV&V effort uses or develops
its own set of test and analysis tools separate from the developer’s tools. Sharing of tools is
allowable for computer support environments (e.g., compilers, assemblers, and utilities) or
for system simulations where an independent version would be too costly. For shared tools,
IV&V conducts qualification tests on tools to assure that the common tools do not contain
errors that may mask errors in the system being analyzed and tested. Off-the shelf tools
that have extensive history of use do not require qualification testing. The most important
aspect for the use of these tools is to verify the input data used.

Glossary – Abbreviations – Acronyms 571

Template

1) An asset with parameters or slots that can be used to construct an instantiated asset
(IEEE 1517).

2) A partially complete document in a predefined format that provides a defined structure
for collecting, organizing, and presenting information and data (PMBOK® Guide).

Test (IEEE 829)

1) An activity in which a system or component is executed under specified conditions,
the results are observed or recorded, and an evaluation is made of some aspect of the
system or component.

2) To conduct an activity as in (1).

3) A set of one or more test cases and procedures.

Threat (PMBOK® Guide) A risk that would have a negative effect on one or more project
objectives.

Traceability

1) The degree to which a relationship can be established between two or more products
of the development process, especially products having a predecessor-successor or
master-subordinate relationship to one another (ISO 24765).

Example: the degree to which the requirements and design of a given system element
match; the degree to which each element in a bubble chart references the requirement
that it satisfies.

2) A discernable association among two or more logical entities such as requirements,
system elements, verifications, or tasks. (See also “bidirectional traceability” and
“requirements traceability.”) (CMMI-DEV).

Traceability matrix (ISO 24765) A matrix that records the relationship between two or more
products of the development process.

Example: a matrix that records the relationship between the requirements and the design
of a given software component.

Trunk (ISO 24765) The software’s main line of development; the main starting point of most
branches.

Note: One can often distinguish the trunk from other branches by the version numbers used
for identifying its files, which are shorter than those of all other branches.

Unit test

1) Testing of individual routines and modules by the developer or an independent tester.

2) A test of individual programs or modules in order to ensure that there are no analysis
or programming errors (ISO/IEC 2382-20).

3) Test of individual hardware or software units or groups of related units (ISO 24765).

Validation

1) Confirmation, through the provision of objective evidence, that the requirements for a
specific intended use or application have been fulfilled (ISO 15288).

572 Glossary – Abbreviations – Acronyms

2) (A) The process of evaluating a system or component during or at the end of the devel-
opment process to determine whether it satisfies specified requirements. (B) The pro-
cess of providing evidence that the system, software, or hardware and its associated
products satisfy requirements allocated to it at the end of each life cycle activity, solve
the right problem (e.g., correctly model physical laws, implement business rules, and
use the proper system assumptions), and satisfy intended use and user needs (IEEE
1012).

Vendor branch (ISO 24765) A branch for keeping track of versions of imported software.

Note: Differences between successive versions can then be readily applied to the locally
modified import.

Verification

1) Confirmation, through the provision of objective evidence, that specified requirements
have been fulfilled (ISO 12207).

2) (A) The process of evaluating a system or component to determine whether the prod-
ucts of a given development phase satisfy the conditions imposed at the start of
that phase. (B) The process of providing objective evidence that the system, soft-
ware, or hardware and its associated products conform to requirements (e.g., for cor-
rectness, completeness, consistency, and accuracy) for all life cycle activities dur-
ing each life cycle process (acquisition, supply, development, operation, and main-
tenance); satisfy standards, practices, and conventions during life cycle processes; and
successfully complete each life cycle activity and satisfy all the criteria for initiat-
ing succeeding life cycle activities. Verification of interim work products is essen-
tial for proper understanding and assessment of the life cycle phase product(s) (IEEE
1012).

Version (ISO 24765)

1) An initial release or re-release of a computer software configuration item, associated
with a complete compilation or recompilation of the computer software configuration
item.

2) An initial release or complete re-release of a document, as opposed to a revision result-
ing from issuing change pages to a previous release.

3) An operational software product that differs from similar products in terms of capa-
bility, environmental requirements, and configuration.

4) An identifiable instance of a specific file or release of a complete system.

Note: Modification to a version of a software product, resulting in a new version, requires
configuration management action.

Version control (ISO 24765) Establishment and maintenance of baselines and the identifi-
cation and control of changes to baselines that make it possible to return to the previous
baseline.

Very Small Entity (VSE) (ISO 29110) A VSE is an entity (enterprise, organization, depart-
ment, or project) having up to 25 people.

View (ISO 24765) A developer’s copy of a branch.

Glossary – Abbreviations – Acronyms 573

ABBREVIATIONS – ACRONYMS

AAR After Action Review

ACM Association for Computing Machinery

AECL Atomic Energy Canada Limited

ASQC American Society for Quality Control

BPMN Business Process Modeling and Notation

CAR Causal Analysis and Resolution

CASE Computer Aided Software/System Engineering

CCB Configuration Control Board

CEO Chief Executive Officer

CI Continuous Improvement

CI Configuration Item

CM Configuration Management

CMM® Capability Maturity Model

CMMI® Capability Maturity Model Integration (www.sei.cmu.edu/cmmi)

CMMI–DEV CMMI for Development

CMMI–ACQ CMMI for Acquisition

CMMI–SVC CMMI for Services

CobiT Control Objectives for Information and related Technology

COCOMO COnstructive COst MOdel (http://sunset.usc.edu/csse/research/
COCOMOII/cocomo_main.html)

COTS Commercial off the shelf

DP Deployment Package

EIA Electronic Industries Alliance

ÉTS École de technologie supérieure (www.etsmtl.ca)

FDA Food and Drug Administration

FEMA Failure Mode and Effect Analysis

FSM Finite State Machine

GE General Electric

GSEP Generic Systems Engineering Process

HRMS Human Resource Management System

IV&VI Independent Verification and Validation

IBM International Business Machines

IDEAL Initiating, Diagnosing, Establishing, Acting, Learning

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers (www.ieee.org)

let &hbox {char '046}www.sei.cmu.edu/cmmi
http://www.sei.cmu.edu/cmmi
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
let &hbox {char '046}www.etsmtl.ca
http://www.etsmtl.ca
let &hbox {char '046}www.ieee.org
http://www.ieee.org

574 Glossary – Abbreviations – Acronyms

INCOSE International Council on Systems Engineering (www.incose.org)

IS Information System

ISACA Information Systems Audit and Control Association

ISBG International Software Benchmarking Standards Group
(www.isbsg.org)

ISM Integrated Software Management

ISO International Organization for Standardization (www.iso.org). Note:
ISO is not an abbreviation.

ISO/IEC International Organization for Standardization/ International
Electrotechnical Commission

ISO/IEC JTC 1 SC 7 Sub committee 7 Software and systems engineering

ISSEP Integrated Systems and Software Engineering Process

IT Information Technology

JTC 1 Joint Technical Committee 1 (of ISO/IEC)

KLOC Thousand lines of source code

MLOC Million lines of source code

MR Modification Request also Change Request (CR) or Problem Report
(PR)

NASA National Aeronautics and Space Administration (www.nasa.gov)

OO Object Oriented

OPD Organization Process Definition

OPF Organization Process Focus

PAL Process asset library

PDCA Plan–Do–Check–Act

PM Project Management

PMI Project Management Institute (www.pmi.org)

PMBOK® Project Management Body of Knowledge (www.pmi.org)

PODCAST Portable media player digital audio file made available on the
Internet

PPQA Process and Product Quality Assurance

PR Peer Review

PR Problem Report

QE Quality Engineering

QMS Quality Management System

RAMS Reliability, Availability, Maintainability, and Safety

RFI Request For Information

RFP Request For Proposal

RTCA Radio Technical Commission for Aeronautics

let &hbox {char '046}www.incose.org
http://www.incose.org
let &hbox {char '046}www.isbsg.org
http://www.isbsg.org
let &hbox {char '046}www.iso.org
http://www.iso.org
let &hbox {char '046}www.nasa.gov
http://www.nasa.gov
let &hbox {char '046}www.pmi.org
http://www.pmi.org
let &hbox {char '046}www.pmi.org
http://www.pmi.org

Glossary – Abbreviations – Acronyms 575

S3m Software Maintenance Maturity Model (www.s3m.org)

SAP System, Anwendunsgen, Produkte/Systems Applications and
Products

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SCE Software Capability Evaluation

SCM Software Configuration Management

SCR Software Change Request

SEI Software Engineering Institute (www.sei.cmu.edu)

SOX Sabarnes-Oxley

SOW Statement of work

SPA Software Process Assessment

SPICE Software Process Improvement and Capability dEtermination

SQA Software Quality Assurance

SQM Software Quality Management

SRA Society for Risk Analysis (www.sra.org)

S/W Software

SW– CMM Software Capability Maturity Model

SWEBOK® Software Engineering Body of Knowledge (www.swebok.org)

TOMS Total Ozone Mapping Spectrometer

TDD Test Driven Development

TQM Total Quality Management

VSE Very Small Entity

V&V Verification and Validation

WBS Work Breakdown Structure

let &hbox {char '046}www.s3m.org
http://www.s3m.org
let &hbox {char '046}www.sei.cmu.edu
http://www.sei.cmu.edu
let &hbox {char '046}www.sra.org
http://www.sra.org
let &hbox {char '046}www.swebok.org
http://www.swebok.org

References

[ABR 15] Abran A. Software Project Estimation: The Fundamentals for Providing
High Quality Information to Decision Makers. Wiley-IEEE Computer
Society Press, Los Alamitos, CA, 2015, 288 p.

[ABR 93] Abran A. and Nguyenkim H. Measurement of the maintenance process
from a demand-based perspective. Journal of Software Maintenance:
Research and Practice, vol. 5, issue 2, 1993, pp. 63–90.

[AGC 06] Auditor General of Canada. Large IT projects. Office of the Auditor
General, Ottawa, Canada, November 2006, Chapter 3. Available at:
http://www.oag-bvg.gc.ca/internet/English/parl_oag_200611_03_e_
14971.html

[ALE 91] Alexander M. In: The Encyclopedia of Team-Development Activities,
edited by J. William Pfeiffer. University Associates, San Diego, CA,
1991.

[AMB 04] Ambler S. W. Examining the Big Requirements Up Front Approach.
Ambysoft Inc. Available at: www.agilemodeling.com/essays/
examiningBRUF.htm

[ANA 04] Anacleto A., Von Wangenheim C. G., Salviano C. F., and Savi R.
Experiences gained from applying ISO/IEC 15504 to small software
companies in Brazil. In: 4th International SPICE Conference on Process
Assessment and Improvement, Lisbon, Portugal, April 2004, pp. 33–37.

[APR 97] April A., Abran A., and Merlo E. Process assurance audits: Lessons
learned. In: Proceedings of ICSE 98, Kyoto, Japan, April 19–25, 1997.

[APR 00] April A. and Al-Shurougi D. Software product measurement for supplier
evaluation. In: FESMA 2000, Madrid, Spain, October 18–20, 2000.

[APR 08] April A. and Abran A. Software Maintenance Management: Evaluation
and Continuous Improvement. John Wiley & Sons, Inc., Hoboken, NJ,
2008, 314 p.

[AUS 96] Austin R. Measuring and Managing Performance in Organizations.
Dorset House Publishing, New York, 1996.

[BAB 15] BABOK, Business Analyst Body of knowledge, v 3.0, International
Institute of Business Analysis. Available at: http://www.theiiba.org

[BAS 96] Basili V. R., Caldiera G., and Rombach H. D. The experience factory.
In: Encyclopedia of Software Engineering, edited by J. J. Marciniak., John
Wiley & Sons, New York, 1996, pp. 469–476.

[BAS 10] Basili V. R., Lindvall, M., Regardie M., and Seaman C. Linking
software development and business strategy through measurement. IEEE
Computer, vol. 43, issue 4, April 2010, pp. 57–65.

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

576

http://www.oag-bvg.gc.ca/internet/English/parl_oag_200611_03_e_14971.html
http://www.oag-bvg.gc.ca/internet/English/parl_oag_200611_03_e_14971.html
file:www.agilemodeling.com/essays/examiningBRUF.htm
file:www.agilemodeling.com/essays/examiningBRUF.htm
let &hbox {char '046}http://www.theiiba.org
http://www.theiiba.org

References 577

[BEI 90] Beizer B. Software Testing Techniques, 2nd edition. Van Nostrand
Reinhold Co., International Thomson Press, New York, NY, 1990.

[BLO 11] Block P. Flawless Consulting: A Guide to Getting Your Expertise Used,
3rd edition. Jossey-Bass/Pfeiffer, San Francisco, CA, 2011.

[BOE 89] Boehm B. W. Tutorial: Software Risk Management. IEEE Computer
Society, Los Alamitos, CA, 1989.

[BOE 91] Boehm B. W. Software risk management: Principles and practices. IEEE
Software, vol. 8, issue 1, 1991, pp. 32–41.

[BOE 00] Boehm B. W., Abst C., Brown A., Chulani, S., Clark, B. C.,
Horowitz, E., Madachy, R., Reifer, D. J., Streece, B. Software Cost
Estimation with COCOMO II. Prentice-Hall, Englewood Cliffs, NJ, 2000.

[BOE 01] Boehm B. W., Basili V. Software Defect Reduction Top 10 List, IEEE
Computer, vol. 34, January 2001, pp. 135–137.

[BOL 95] Boloix G. and Robillard P. (1995) Software system evaluation
framework. Computer Magazine, December 1995, pp. 17–26.

[BOO 94] Booch G. and Bryan D. Software Engineering with Ada, 3rd edition.
Benjamin/Cummings, Redwood City, CA, 1994.

[BOU 05] Bousetta A. and Labreche P. Introduction to 6-sygma applied to
software, Presentation at Montreal SPIN, Ecole de Technologie Supérieure
(ETS), Montreal, Canada, March 2005.

[BRO 02] Broy M. and Denert E. (eds.) A history of software inspections. In:
Software Pioneers. Springer-Verlag, Berlin, Heidelberg, 2002.

[BRI 16] Bridges W. Managing Transitions—Making the Most of Change, 4th
edition. Da Capo Press, Cambridge, MA, 2016.

[BUC 96] Buckley Fletcher J. Implementing Configuration Management:
Hardware, Software, and Firmware. IEEE Computer Society Press, Los
Alamitos, CA, 1996.

[BYR 96] Byrnes P. and Phillips M. Software Capability Evaluation, Version 3.0,
Method Description (CMU/SEI-96-TR-002, ADA309160). Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

[CAR 92] Carleton A. D., Park R. E., Goethert W. B., Florac W. A., Bailey
E. K., Pfleeger S. L. Software Management for DoD Systems:
Recommendations for Initial Implementation, SEI Technical Report, USA,
September 1992.

[CEG 90] CEGELEC, Software Validation Phase Procedure, CEGELEC
Methodology, 1990.

[CEG 90a] Software Configuration Management Procedure, CEGELEC Methodology,
1990.

[CEN 01] EN 50128, Railway applications—Communications, signaling, and
processing systems—Software for railway control and protection systems,
European Standard, 2001.

[CHA 99] Charrette R. R. Building bridges over intelligent rivers. American
Programmer, September1992, pp. 2–9.

[CHA 06] Charette R. Focus on Dr. Robert Charette, Master Risk Management
Practitioner—A CAI State of Practice Interview, Computer Aid Inc.,
Allentown, PA, March 2006.

578 References

[CHI 02] Chillagere R., Bhandari I., Chaar J., and Halliday, D. Orthogonal
defect classification. IEEE Transactions on Software Engineering, vol. 18,
issue 11, November 2002, pp. 943–956.

[CHR 08] Chrissis M. B., Konrad M., and Shrum S. CMMI, 2nd edition. Pearson
Education, Paris, France, 2008.

[COA 03] Coallier F. International standardization in software and systems
engineering. CrossTalk, The Journal of Defense Soltware Engineering,
February 2003, pp. 18–22.

[COB 12] IT Governance Institute, CobiT, Governance, Control and Audit for
Information and Related Technology, version 5, April 2012. Available at:
http://www.isaca.org

[COL 10] Commit-monitor for Subversion Repositories, Version 1.7.0, October 24,
2010. Available at: https://sourceforge.net/projects/commitmonitor/

[CON 93] Conseil du Trésor. Politique du Conseil du Trésor, numéro NCTTI-26:
Évaluation de logiciels- Caractéristiques d’utilisation-Critères
d’applicabilité, version 11, février 1993.

[CRO 79] Crosby P. B. Quality Is Free. McGraw-Hill, New York, 1979.
[CUR 79] Curtis B. In search of software complexity. In: Proceedings of the

IEEE/PINY Workshop on quantitative software models, IEEE catalog no
TH00067-9, October 1979, pp. 95–105.

[DAV 93] Davenport T. Process Innovation. Harvard Business School Press,
Boston, MA, 1993.

[DAV 06] Davies I., Green P., Rosemann M., Indulska, M., Gallo S. How do
Practitioners Use Conceptual Modeling in Practice? Data & Knowledge
Engineering, vol. 58, 2006, pp. 358–380.

[DEC 08] Decker G. and Schreiter T. OMG releases BPMN 1.1—What’s
changed?, Inubit AG, Berlin, Germany M., 2008, pp. 1–9, Available at:
http://docplayer.net/15316886-Omg-releases-bpmn-1-1-what-s-
changed.html

[DEM 00] DeMarco T. and Lister T. Both sides always lose: Litigation of
software-intensive contracts. CrossTalk, The Journal of Defense Soltware
Engineering, February 2000, pp. 4–6.

[DES 95] Desharnais J-M. and Abran A. How to successfully implement a
measurement program: From theory to practice., In: Metrics in Software
Evolution, edited by M. Müllenberg and A. Abran. R. Oldenbourg Verlag,
Oldenburg, 1995, pp. 11–38.

[DIA 02] Diaz, M. and King J. How CMM impacts quality, productivity, rework,
and the bottom line. CrossTalk, The Journal of Defense Soltware
Engineering, March 2002, pp. 9–14.

[DIN 05] Dingsøyr T. Postmortem reviews: Purpose and approaches in software
engineering. Information and Software Technology, vol. 47, issue 5, March
31, 2005, pp. 293–303.

[DIO 92] Dion R. Elements of a process improvement program, Raytheon. IEEE
Software, vol. 9, issue 4, July 1992, pp. 83–85.

[DOD 83] DoD-STD-1679A, Military Standard—Weapon Systems Software
Development, Department of Defense, Washington D.C., 1983.

let &hbox {char '046}http://www.isaca.org
http://www.isaca.org
let &hbox {char '046}https://sourceforge.net/projects/commitmonitor/
https://sourceforge.net/projects/commitmonitor/
let &hbox {char '046}http://docplayer.net/15316886-Omg-releases-bpmn-1-1-what-s-changed.html
let &hbox {char '046}http://docplayer.net/15316886-Omg-releases-bpmn-1-1-what-s-changed.html
http://docplayer.net/15316886-Omg-releases-bpmn-1-1-what-s-changed.html
http://docplayer.net/15316886-Omg-releases-bpmn-1-1-what-s-changed.html

References 579

[DOD 09] Technology Readiness Assessment (TRA) Deskbook, Department of
Defense, United States, July 2009.

[DOR 96] Dorofee A. J., Walker, J.A., Alberts, C.J., Higuera, R.P., Murphy,
R.L., Williams, R.C. Continuous Risk Management Guidebook,
Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA, 1996.

[DOW 94] Down A., Coleman M. and Absolon P. Risk Management for Software
Projects. McGraw-Hill Book Company, London, 1994.

[EAS 96] Easterbrook S. The role of independent V&V in upstream software
development processes. In: Proceedings of the 2nd World Conference on
Integrated Design and Process Technology (IDPT), Austin, Texas, USA,
December 4, 1996.

[EGY 04] Egyed A. Identifying requirements conflicts and cooperation. IEEE
Software, November/December, 2004.

[EIA 98] EIA 1998 Electronic Industries Alliance, Systems Engineering Capability
Model (EIA/IS-731), Washington, DC, 1998.

[EUR 11] EUROCAE ED-12C - Software Considerations in Airborne Systems and
Equipment Certification, EUROCAE, 17 rue Hamelin, 75783, Paris Cedex,
France, 2011.

[FAG 76] Fagan M. E. Design and code inspections to reduce errors in program
development. IBM System Journal, vol. 15, issue 3, 1976, pp. 182–211.

[FDA 02] General Principles of Software Validation; Final Guidance for Industry and
FDA Staff, U.S. Food and Drug Administration, 2002.

[FEN 07] Fenton N. and Neil M. Software Metrics: Roadmap. Queen Mary
University, Department of Computer Science, Harlow, UK, 2007.

[FOR 92] Fornell G. E. Process for acquiring software architecture, cover letter to
draft report, July 10, 1992.

[FOR 05] Forsberg K., Mooz H. and Cotterman H. Visualizing Project
Management, 3rd edition. John Wiley & Sons, Inc., New York, NY, 2005.

[FRE 05] Freeman S. Toyota attributes Prius shutdowns to software glitch. Wall
Street Journal, May 16, 2005.

[GAL 17] Galin D. Software Quality: Concepts and Practice. Wiley-IEEE Computer
Society Press, Hoboken, New Jersey, 2017, 726 p.

[GAN 04] Ganssle J. Disaster redux!, Available at: http://www.embedded.com/
electronics-blogs/break-points/4025051/Disaster-redux-

[GAR 84] Garvin D. What does product quality really mean? MIT Sloan
Management Review, Fall 1984, pp. 25–45.

[GAR 15] Garcia L., Laporte C. Y., Arteaga J., and Bruggmann M.
Implementation and certification of ISO/IEC 29110 in an IT startup in
Peru. Software Quality Professional Journal, ASQ, vol. 17, issue 2, 2015,
pp. 16–29.

[GAU 04] Gauthier R. Une Force en Mouvement, La Boule de Cristal, Centre de
recherche informatique de Montreal, 22 janvier 2004.

[GEC 98] Geck B., Gloger M., Jockusch, S., Lebsanft, K., Mehner, T., Paul, P.,
Paulisch, F., Rheindt, M., Volker, A., Weber, N. Software@Siemens:
Best practices for the measurement and management of processes and

http://www.embedded.com/electronics-blogs/break-points/4025051/Disaster-redux-
http://www.embedded.com/electronics-blogs/break-points/4025051/Disaster-redux-

580 References

architectures. In: Software Process Improvement Conference, Monte Carlo,
Monaco, December 1998.

[GEP 04] Geppert L. Lost radio contact leaves pilots on their own. IEEE Spectrum,
November 2004.

[GHE 09] Gheysens P. Drill through merges in TFS2010, Into Visual Studio team
System, blogging about the current and upcoming release(s), January 5,
2009. Available at: http://intovsts.net/category/version-control/

[GIL 88] Gilb T. Principles of Software Engineering Management. Addison-Wesley,
Wokingham, UK, 1988.

[GIL 93] Gilb T. and Graham D. Software Inspection. Addison-Wesley,
Wokingham, UK, 1993. ISBN: 0-201-63181-4.

[GIL 08] Gilb T. Review Process Design: Some Guidelines for Tailoring Your
Engineering Review Processes for Maximum Efficiency. International
Council on Systems Engineering (INCOSE), The Netherlands, June
2008.

[GOT 99a] Gotterbarn F. How the new software engineering code of ethics affects
you. IEEE Software, vol. 16, issue 6, 1999, pp. 58–64.

[GOT 99b] Gotterbarn D., Miller K., and Rogerson S. Computer society and
ACM approve software engineering code of ethics. IEEE Computer,
vol. 32, issue 10, 1999, pp. 84–88.

[GRA 92] Grady R. Practical Software Metrics for Project Management and Process
Improvement. Prentice-Hall Inc., Englewood Cliffs, NJ, 1992.

[HAI 02] Hailpern B. and Santhanam P. Software debugging, testing, and
verification. IBM Systems Journal, vol. 41, issue 1. Humphrey, W. S. A
Discipline for Software Engineering. Addison-Wesley, Reading, MA,
2002.

[HAL 96] Haley T. J. Software process improvement at Raytheon. IEEE Software,
vol. 13, issue 6, 1996, pp. 33–41, Figure abstracted from IEEE Software.

[HAL 78] Halstead M. H. Software science: A progress report. In: Proceedings of
the U.S. Army/IEEE Second Life-Cycle Management Conference, Atlanta,
August 1978, pp. 174–179.

[HEF 01] Hefner R. and Tauser J. Things they never taught you in CMM school.
26th Annual NASA Goddard Software Engineering Workshop, Greenbelt,
MD, November 27–29, 2001.

[HEI 14] Heimann, D.I. An Introduction to the New IEEE 730 Standard on Software
Quality Assurance. Software Quality Professional (SQP), vol. 16, issue 3,
2014, pp. 26–38.

[HOL 98] Holland D. Document inspection as an agent of change. In: Dare to be
Excellent, edited by A. Jarvis and l. Hayes, Prentice Hall, Upper Saddle
River, NJ, 1998.

[HUM 89] Humphrey W. Managing the Software Process. Addison-Wesley, Boston,
MA, 1989.

[HUM 00] Humphrey W. S. The Personal Software Process (PSP),
CMU/SEI-2000-TR-022, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2000.

[HUM 02] Humphrey W. S. Winning with Software, An Executive Strategy.
Addison-Wesley, Reading, MA, 2002.

let &hbox {char '046}http://intovsts.net/category/version-control/
http://intovsts.net/category/version-control/

References 581

[HUM 04] Humphrey W. S. The Quality Attitude, news@sei newsletter, Number 3,
2004.

[HUM 05] Humphrey W. S. PSP: A Self-Improvement Process for Software
Engineers. Addison-Wesley, Reading, MA, 2005.

[HUM 07] Humphrey W. S., Konrad M., and Over J. Peterson, W. Future
directions in process improvement. CrossTalk, The Journal of Defense
Soltware Engineering, February 2007.

[HUM 08] Humphrey W. S. The software quality challenge. CrossTalk, The Journal
of Defense Soltware Engineering, June 2008, pp. 4–9.

[IBE 02] Iberle K. But will it work for me. In: Proceedings of the Pacific Northwest
Software Quality Conference, Portland, United States, 2002, pp. 377–398.
Available at: http://www.kiberle.com/publications/

[IBE 03] Iberle K. They don’t care about quality. In: Proceedings of STAR East,
Orlando, United States, 2003. Available at:
http://www.kiberle.com/publications/

[IEE 98] IEEE 1998, Std. 1320.1-1998. IEEE Standard for Functional Modeling
Language - Syntax and Semantics for IDEF0, The Institute of Electrical
and Electronics Engineers, New York, NY, 1998.

[IEE 98a] IEEE 1998, Std. 830-1998. IEEE Recommended practice for software
requirements, The Institute of Electrical and Electronics Engineers,
New York, NY, 1998.

[IEE 98b] IEEE 1998. Std. 1061-1998. IEEE Standard for a Software Quality Metrics
Methodology, New York, NY, 1998.

[IEE 99] IEEE-CS, IEEE-CS-1999. Software Engineering Code of Ethics and
Professional Practice, IEEE-CS/ACM, 1999, https://www.computer.org/
web/education/code-of-ethics

[IEE 07] IEEE Std 1362-2007. IEEE Guide for Information Technology—System
Definition—Concept of operations (ConOps) Document, 2007.

[IEE 08a] IEEE 829-2008. IEEE Standard for Software and System Test
Documentation, IEEE, The Institute of Electrical and Electronics
Engineers, New York, NY, 2008.

[IEE 08b] IEEE 1028, IEEE Standard 1028-2008. IEEE Standard for Software
Reviews and Audits, IEEE, The Institute of Electrical and Electronics
Engineers, New York, NY, 2008.

[IEE 12] IEEE Std 1012-2012. IEEE Standard for System and Software Verification
and Validation, IEEE, The Institute of Electrical and Electronics Engineers,
New York, NY, 2012.

[IEE 12b] IEEE Std 828-2012. IEEE Standard for Configuration Management in
Systems and Software Engineering, IEEE, The Institute of Electrical and
Electronics Engineers, New York, NY, 2012.

[IEE 14] IEEE 730. IEEE Standard for Software Quality Assurance Processes: IEEE,
The Institute of Electrical and Electronics Engineers, New York, NY, 2014.

[INC 15] INCOSE Systems Engineering Handbook: A Guide for System Life Cycle
Processes and Activities, 4th Edition, Hoboken, NJ, USA: John Wiley and
Sons, Inc, ISBN: 978-1-118-99940-0, 304 pages.

[ISO Guide 73] ISO Guide73:2009. Risk management—Vocabulary, International
Organization for Standardization (ISO), Geneva, Switzerland, 2009.

let &hbox {char '046}http://www.kiberle.com/publications/
http://www.kiberle.com/publications/
let &hbox {char '046}http://www.kiberle.com/publications/
http://www.kiberle.com/publications/
https://www.computer.org/web/education/code-of-ethics
https://www.computer.org/web/education/code-of-ethics

582 References

[ISO 01] ISO/IEC 9126-1:2001. Software Engineering—Product quality—Part 1:
Quality model: 2001, International Organization for Standardization (ISO),
Geneva, Switzerland, 2001, 25 p.

[ISO 04a] ISO 17050-1:2004. Conformity assessment–Supplier’s declaration of
conformity- Part 1: General requirements, International Organization for
Standardization (ISO), Geneva, Switzerland, 2004.

[ISO 04b] ISO 17050-2:2004. Conformity assessment—Supplier’s declaration of
conformity - Part 2: Supporting documentation, International Organization
for Standardization (ISO), Geneva, Switzerland, 2004.

[ISO 05c] ISO/IEC 27002 :2005. Information technology—Security techniques—
Code of practice for information security management, International
Organization for Standardization (ISO), Geneva, Switzerland. 2005.

[ISO 05d] ISO/IEC 17799:2005. Information technology—Security techniques—
Code of practice for information security management, International
Organization for Standardization (ISO), Geneva, Switzerland, 2005.

[ISO 06a] ISO/IEC/IEEE 16085:2006. Systems and software engineering—Life cycle
processes—Risk management, International Organization for
Standardization (ISO), Geneva, Switzerland, 2006.

[ISO 08] ISO/IEC 26514:2008. Systems and Software Engineering—Requirements
for Designers and Developers of User Documentation, International
Organization for Standardization (ISO), Geneva, Switzeerland, 2008.

[ISO 09] ISO/IEC/IEEE 16326. Systems and software engineering—Life cycle
processes—Project management, International Organization for
Standardization (ISO), Geneva, Switzerland, 2009.

[ISO 09a] ISO 9004:2009. Managing for the sustained success of an organization—A
quality management approach, International Organization for
Standardization (ISO), Geneva, Switzerland, 2009.

[ISO 10] ISO/IEC TR 24774:2010. Software and systems engineering—Life cycle
management- Guidelines for process description, International
Organization for Standardization (ISO), Geneva, Switzerland, 2010.

[ISO 11e] ISO/IEC TR 29110-5-1-2:2011. Software Engineering—Lifecycle Profiles
for Very Small Entities (VSEs)—Part 5-1-2: Management and Engineering
Guide—Basic Profile, International Organization for Standardization (ISO),
Geneva, Switzerland. Available for free at: http://standards.iso.org/ittf/
PubliclyAvailableStandards/index.html

[ISO 11f] ISO/IEC/IEEE 29148:2011. Systems and software engineering—Life cycle
processes—Requirements Engineering, International Organization for
Standardization (ISO), Geneva, Switzerland, 2011, 54 p.

[ISO 11g] ISO 19011: 2011. Guidelines for auditing systems, International
Organization for Standardization (ISO), Geneva, Switzerland, 2011,
44 p.

[ISO 11h] ISO/IEC 20000-1:2011. Information technology—Service
management—Part 1: Service management system requirements,
International Organization for Standardization (ISO), Geneva, Switzerland,
2011.

[ISO 11i] ISO/IEC 25010:2011. Systems and software engineering–Systems and
Software Quality Requirements and Evaluation (SQuaRE)–System and

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

References 583

software quality models, International Organization for Standardization
(ISO), Geneva, Switzerland, 2011, 34 p.

[ISO 14] ISO/IEC 90003:2014. Software Engineering—Guidelines for the
application of ISO9001:2008 to computer software, International
Organization for Standardization (ISO), Geneva, Switzerland, 2014, 54 p.

[ISO 14a] ISO/IEC 25000:2014. System and software engineering—System and
Software Quality Requirements and Evaluation (SQuaRE)—Guide to
SQuaRE—Guide de SQuaRE, International Organization for
Standardization (ISO), Geneva, Switzerland, 2014, 27 p.

[ISO 15] ISO 9001. Quality systems requirement—Requirements, International
Organization for Standardization (ISO), Geneva, Switzerland, 2015.

[ISO 15a] ISO 17021-1:2015. Conformity assessment—Requirements for bodies
providing audit and certification of management systems—Part 1:
Requirements, International Organization for Standardization (ISO),
Geneva, Switzerland, 2014, 48 p.

[ISO 15b] ISO 9000, Quality management system-Fundamentals and vocabulary,
International Organization for Standardization (ISO), Geneva, Switzerland,
2015.

[ISO 15c] ISO/IEC/IEEE 15288: 2015. Systems and software engineering—System
life cycle processes, International Organization for Standardization (ISO),
Geneva, Switzerland, 2015.

[ISO 16d] ISO 13485: 2016. Medical devices—Quality management systems—
Requirements for regulatory purposes, International Organization for
Standardization (ISO), Geneva, Switzerland, 2016.

[ISO 16f] ISO/IEC TR 29110-1:2016. Systems and software Engineering—Lifecycle
Profiles for Very Small Entities (VSEs)—Part 1: Overview, International
Organization for Standardization (ISO), Geneva, Switzerland, 2016.
Available for free at: http://standards.iso.org/ittf/Publicly
AvailableStandards/index.html

[ISO 17] ISO/IEC/IEEE 12207:2017. Systems and software engineering—Software
life cycle processes, International Organization for Standardization (ISO),
Geneva, Switzerland, 2017.

[ISO 17a] ISO/IEC/IEEE 24765:2017. Systems and Software Engineering
Vocabulary, International Organization for Standardization (ISO), Geneva,
2017, Available at: www.computer.org/sevocab

[ISO 17b] ISO/IEC/IEEE 15289: 2017. Systems and software engineering—Content
of life cycle information items (documentation), International Organization
for Standardization (ISO), Geneva, Switzerland, 2017, 88 p.

[ISO 17c] ISO/IEC/IEEE 15939:2017. Systems and software
engineering—Measurement process, International Organization for
Standardization (ISO), Geneva, Switzerland, 2017.

[ISO 17d] ISO/IEC 20246. Software and Systems Engineering—Work Product
Reviews, International Organization for Standardization (ISO), Geneva,
Switzerland, 2017, 42 p.

[IST 11] Standard Glossary of terms Used in Software Testing, version 1.3,
International Software Testing Qualifications Board, Brussels, Belgium,
2011. Available at: http://www.glossary.istqb.org

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
let &hbox {char '046}www.computer.org/sevocab
www.computer.org/sevocab
let &hbox {char '046}http://www.glossary.istqb.org
http://www.glossary.istqb.org

584 References

[JAC 07] Jackson D., Thomas M., and Millet, L. Software for Dependable
Systems: Sufficient Evidence?, Committee on Certifiably Dependable
Software Systems, National Research Council, ISBN: 0-309-10857-8,
2007, 120 p.

[JON 00] Jones C. Software Assessments, Benchmarks, and Best Practices.
Addison-Wesley, Reading, MA, 2000

[JON 03] Jones C. Making measurement work. CrossTalk, The Journal of Defense
Soltware Engineering, January 2003.

[JPL 00] Report on the Loss of the Mars Polar Lander and Deep Space 2
Missions, JPL Special Review Board, Jet Propulsion Laboratory, March
2000.

[KAS 00] Kasse T. and Mcquaid P. Software Configuration Management for Project
Leaders, SQP, Software Quality Professional, vol. 2, issue 4, September
2000, pp. 8–19.

[KAS 05] Kasunic M. Designing an Effective Survey, Handbook, CMU/SEI-2005-
HB-004. Software Engineering Institute, Pittsburg, PA, 2005.

[KAS 08] Kasunic M., McCurley J., and Zubrow D., Can You Trust Your Data?
Establishing the Need for a Measurement and Analysis Infrastructure
Diagnostic, Technical Note CMU/SEI-2008-TN-028. Software Engineering
Institute, Pittsburgh, PA, November 2008.

[KER 01] Kerth N. Project Retrospective: A Handbook for Team Reviews. Dorset
House Publishing, New York, 2001.

[KID 98] Kidwell P. A. Stalking the elusive computer bug. IEEE Annals of the
History of Computing, vol. 20, issue 4, 1998, pp 5–9.

[KON 00] Konrad M. Overview of CMMI Model, Presentation to Montreal SPIN,
Montreal, Canada, November 21, 2000.

[KRA 98] Krasner H. Using the cost of quality approach for software. CrossTalk,
The Journal of Defense Soltware Engineering, vol. 11, issue 11, November
1998.

[LAG 96] Laguë B. and April A. 1996. Mapping of the ISO 9125 maintainability
internal metrics to an industrial research tool. In: Proceedings of SES 1996,
Montreal, Canada, October 21–25, 1996.

[LAN 08] Land K., Hobart W., and Walz J. A Practical Metrics and Measurements
Guide For Today’s Software Project Manager. IEEE Computer Society
ReadyNotes, 2008.

[LAP 97] Laporte C. Y. and Papiccio N. L’ingénierie et l’intégration des processus
de génie logiciel, de génie systèmes et de gestion de projets. Revue Génie
Logiciel, vol. 46, 1997.

[LAP 98] Laporte C. Y. and Trudel S. Addressing the people issues of process
improvement activities at Oerlikon Aerospace. Software
Process-Improvement and Practice, vol. 4, issue 1, 1998, pp. 187–198.

[LAP 03] Boucher G. Risk management applied to the re-engineering of a weapon
system. CrossTalk – The Journal of Defense Software Engineering, January
2003.

[LAP 07a] Laporte C. Y., Doucet M., Bourque P., and Belkébir Y. Utilization of a
Set of Software Engineering Roles for a Multinational Organization, 8th
International Conference on Product Focused Software Development and

References 585

Process Improvement, PROFES 2007, Riga (Latvia), July 2–4, 2007,
pp. 35–50.

[LAP 07b] Laporte C. Y., Doucet M., Roy D., and Drolet M. Improvement of
Software Engineering Performances An Experience Report at Bombardier
Transportation—Total Transit Systems Signalling Group, International
Council on Systems Engineering (INCOSE) Seventeenth International
Symposium, San Diego (CA), USA, June 24–28, 2007.

[LAP 08] Laporte C. Y., Alexandre S., and Renault A. Developing international
standards for very small enterprises, IEEE Computer, vol. 41, issue 3,
March 2008, pp. 98–101.

[LAP 08a] Laporte C. Y., Roy R., and Novieli R. La gestion des risques d’un projet
de développement et d’implantation d’un système informatisé au Ministère
de la Justice du Québec. Revue Génie Logiciel, mars 2008, numéro 84,
pp. 2–12.

[LAP 12] Laporte C. Y., Berrhouma N., Doucet M., and Palza-Vargas, E.
Measuring the cost of software quality of a large software project at
Bombardier Transportation. Software Quality Professional Journal, ASQ,
vol. 14, issue 3, June 2012, pp 14–31.

[LAP 14] Laporte C.Y., O’Connor R. Systems and Software Engineering
Standards for Very Small Entities Implementation and Initial Results,
QUATIC’2014, 9th International Conference on the Quality of Information
and Communications Technology, Guimarães, Portugal, September 23–26,
2014, pp. 38–47.

[LAP 16a] Laporte C. Y. and O’Connor R. V. QUATIC’2016, Implementing
process improvement in very small enterprises with ISO/IEC 29110—A
multiple case study analysis. In: 10th International Conference on the
Quality of Information and Communications Technology (QUATIC 2016),
Caparica/Lisbon, Portugal, September 6–9, 2016.

[LEV 00] Leveson N. G. System safety in computer-controlled automotive systems.
Society of Automotive Engineers (SAE) Congress, Detroit, United States,
March 2000.

[LEV 93] Leveson N. and Turner C. An investigation of the Therac-25 accidents.
IEEE Computer, vol. 26, issue 7, 1993, pp. 18–41.

[MAY 02] May W. A global applying ISO9001:2000 to software products. Quality
Systems Update, vol. 12, issue 8, August 2002.

[MCC 76] McCabe T. J. A complexity measure. IEEE Transactions on Software
Engineering, vol. SE-2, issue 4, November 1976, pp. 308–320.

[MCC 77] McCall J. A., Richards P. K., and Walters G. F. Factors in software
quality. Griffiths Air Force Base, NY: Rome Air Development Center Air
Force Systems Command, Springfield, NY, United States, 1977.

[MCC 04] McConnell S. Code Complete: A Practical Handbook of Software
Construction, 2nd edition. Microsoft Press, 2004, 960 p.

[MCF 03] McFall D., Wilkie F. G., McCaffery F., Lester N. G., and Sterritt R.
Software processes and process improvement in Northern Ireland. In:
Proceedings of the 16th International Conference on Software & Systems
Engineering and their Applications, ICSSEA 2003, Paris, France,
December 1–10, 2003, ISSN: 1637-503.

586 References

[MCG 02] McGarry J., Card D., Jones C., Layman B., Clark E., Dean J., and
Hall F. Practical Software Measurement: Objective Information for
Decision Makers. Addison-Wesley, Washinghton, DC, USA, 2002.

[MCQ 04] McQuaid P. and Dekkers C. Steer clear of hazards on the road to software
measurement success. Software Quality Professional Journal, vol. 6, issue
2, 2004, pp. 27–33.

[MIN 92] Mintzberg H. Structure in Fives: Designing Effective Organizations,
Pearson Education, Boston, MA, 1992, 312 p.

[MOL 13] Moll R. Being prepared – A bird’s eye view of SMEs and risk
management. ISO Focus: International Organization for Standardization,
Geneva, Switzerland, February 2013.

[MOR 05] Moran T. What’s Bugging the High-Tech Car? New York Times, February
6, 2005.

[NAS 04] NASA, Goddard Space Flight Center, Process Asset Library, ETVX
Diagram Template, DSTL 580-TM-011-01, v1.0, Greenbelt, Maryland,
2004.

[NOL 15] Nolan A. J., Pickard A. C., Russell J. L., and Schindel W. D. When
two is good company, but more is not a crowd. In: 25th Annual INCOSE
International Symposium, Seattle, July 13–16, 2015.

[OBR 09] O’Brien, J. Preparing for an Internal Assessment Interview. CrossTalk
Journal of Defense Software Engineering, vol. 22, issue 7, 2009,
pp. 26–27.

[OLS 94] Olson T. G., Reizer N. R., Over J. W. A Software Process Framework for
the SEI Capability Maturity Model, CMU/SEI-94-HB-01, 1994

[OLS 06] Olson T. G. Defining short and usable processes. CrossTalk Journal of
Defense Software Engineering, vol. 19, issue 6, 2006, pp. 24–28.

[OMG 11] Object Management Group, Process Model and Notation (BPMN), version
2.0. Download available at: www.omg.org/spec/BPMN/2.0/PDF//

[OUA 07] Ouanouki R. and April A. IT process conformance measurement: A
Sarbanes-Oxley requirement. In: Proceeding of the IWSM Mensura, Palma
de Mallorca, Spain, November 4–8, 2007. Available at: http://
publicationslist.org.s3.amazonaws.com/data/a.april/ref-197/1111.pdf

[OZ 94] Oz E. When professional standards are lax: The confirm failure and its
lessons. Communications of the ACM, vol. 37, issue 10, 1994, pp. 29–36.

[PAR 92] Park R. E. Software Size Measurement: A Framework for Counting Source
Statements (CMU/SEI-92-TR-20), Software Engineering Institute, Carnegie
Mellon University, Pittburgh, PA, September1992.

[PAR 03] Parnas D., and Lawford M. The role of inspection in software quality
assurance. IEEE Transactions On Software Engineering, vol. 29, issue 8,
August 2003.

[PAU 95] Paulk M., Curtis, B., Chrissis. M.B., Weber, C. V. The Capability
Maturity Model: Guidelines for Improving the Software Process. Addison
Wesley, Reading, MA, 1995.

[PMI 13] A Guide to the Project Management Body of Knowledge (PMBOK® Guide),
5th edition. Project Management Institute, Newtown Square, PA, 2013.

[POM 09] Pomeroy-Huff M., Mullaney Julia L., Cannon R., and Sebern M.
The Personal Software Process Body of Knowledge. Software Engineering

let &hbox {char '046}www.omg.org/spec/BPMN/2.0/PDF//
www.omg.org/spec/BPMN/2.0/PDF//
http://publicationslist.org.s3.amazonaws.com/data/a.april/ref-197/1111.pdf
http://publicationslist.org.s3.amazonaws.com/data/a.april/ref-197/1111.pdf

References 587

Institute, Pittsburgh, PA, Carnegie Mellon University. Version 1–2,
CMU/SEI-2009- SR-018, Pittsburgh, PA, 2009.

[PRE 14] Pressman R. S. Software Engineering – A Practitioner’s Approach, 8th
edition. McGraw-Hill, 2014, 976 p.

[PSM 00] Practical Software and Systems Measurement. Department of Defense and
US Army, version 4.0b, October 2000.

[RAD 85] Radice R. A., Roth N. K. O’Hara A. C., Ciarfella W. A. A
programming process architecture. IBM Systems Journal, vol. 24, issue 2,
1985, pp. 79–90.

[RAD 02] Radice R. High Quality Low Cost Software Inspections. Paradoxicon,
Andover, MA, 2002.

[REI 02] Reifer D. Let the numbers do the talking. CrossTalk, The Journal of
Defense Software Engineering, March 2002.

[REI 04] Reichart G. System architecture in vehicles – The key for innovation,
system integration and quality (original in German). In: Proceedings of
the 8th Euroforum Jahrestagung, Munich, Germany, February 10–11,
2004.

[RTC 11] RTCA inc., DO-178C. Software Considerations in Airborne Systems and
Equipment Certification. RTCA, Washington, DC, 2011. Available at:
www.rtca.org

[SAR 02] Sarbanes-Oxley act of 2002, public law 107 — July 30, 2002, 107th

Congress. Available at: https://www.sec.gov/about/laws/soa2002.pdf
[SCH 00] Schulmeyer G. and Mackenzi, G. R. Verification & Validation of

Modern Software, Intensive Systems. Prentice Hall, Upper Saddle River,
NJ, 2000.

[SCH 11] Schamel J. How the Pilot’s Checklist Came About. Available at: http://
www.atchistory.org/History/checklst.htm

[SEI 00] Software Engineering Institute. Overview of CMMI Model, Process Areas,
Tutorial Module 7, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, 2000.

[SEI 06] Standard CMMI® Appraisal Method for Process Improvement (SCAMPI)
A, Version 1.2: Method Definition Document, CMU/SEI-2006-HB-002,
Software Engineering Institute, Pittsburgh, PA, 2006.

[SEI 09] Software Engineering Institute. The Personal Software Process Body of
Knowledge. Carnegie Mellon University, Pittsburgh, PA. Version 1.2,
CMU/SEI-2009-SR-018, 2009.

[SEI 10a] Software Engineering Institute. CMMI® for Development, Version 1.3.
CMMI-DEV, V1.3. Carnegie Mellon University, Pittsburgh, PA. Version
1.3, CMU/SEI-2010-TR-033, Pittsburgh, PA, November 2010.

[SEI 10b] Software Engineering Institute. CMMI for Services, Version 1.3. Carnegie
Mellon University, Pittsburgh, PA, 2010. Version 1.3,
CMU/SEI-2010-TR-034. Available at: http://www.sei.cmu.edu/reports/
10tr034.pdf

[SEI 10c] Software Engineering Institute CMMI for Acquisition, Version 1.3.
Carnegie Mellon University, Pittsburgh, PA. Version 1.3,
CMU/SEI-2010-TR-032, Carnegie Mellon University, Pittsburgh, 2010.
Available at: www.sei.cmu.edu/reports/10tr032.pdf

let &hbox {char '046}www.rtca.org
www.rtca.org
let &hbox {char '046}https://www.sec.gov/about/laws/soa2002.pdf
https://www.sec.gov/about/laws/soa2002.pdf
http://www.atchistory.org/History/checklst.htm
http://www.atchistory.org/History/checklst.htm
http://www.sei.cmu.edu/reports/10tr034.pdf
http://www.sei.cmu.edu/reports/10tr034.pdf
let &hbox {char '046}www.sei.cmu.edu/reports/10tr032.pdf
www.sei.cmu.edu/reports/10tr032.pdf

588 References

[SEL 07] Selby P. and Selby R. W. Measurement-driven systems engineering using
six sigma techniques to improve software defect detection. In: Proceedings
of 17th International Symposium, INCOSE, San Diego, United States, June
2007.

[SHE 01] Sheard S. Evolution of the frameworks quagmire. IEEE Computer,
vol. 34, issue 7, July 2001, pp. 96–98.

[SHE 97] Shepehrd K. Managing risk. In: Proceedings 28th Annual Seminars &
Symposium, Project Management Institute (PMI), Chicago, United States,
September 1997, pp. 19–27.

[SHI 06] Shintani K. Empowered engineers are key players in process
improvements. In: Proceedings of the First International Research
Workshop for Process Improvement in Small Settings Software
Engineering Institute, Carnegie Mellon University, CMU/SEI-2006-Special
Report-001, Pittsburgh, PA, January 2006, SEI, 2005, pp. 115–116.

[SIL 09] Silver B. BPMN Method and Style: A Levels-Based Methodology for BPM
Process Modeling and Improvement Using BPMN 2.0. Cody Cassidy Press,
Altadena, CA, US, 2009.

[SPM 10] Software Project Manager Network (SPMN). American Systems, 2010.
Available at: http://www.spmn.com

[STS 05] Software Technology Support Center. Configuration management
fundamental. CrossTalk, The Journal of Defense Software Engineering,
July 2005, pp. 10–15.

[SUR 17] Suryn W. ISO/IEC JTC1 SC7 Secretariat Report, Kuantan, Malaysia, May
2017.

[SWE 14] Guide to the Software Engineering Body of Knowledge, version 3.0. edited
by P. Bourque and R. E. Fairley. IEEE Computer Society, 2014, 335 p.

[TIK 07] The TickIT Guide, version 5.5. British Standards Institute, London, UK,
November 2007.

[TYL 10] Tylor E. B. Primitive Culture, Researches into the development of
mythology, philosophy, religion, language, art and custom, John Murray,
Cambridge University Press, Cambridge, UK, 2010, 440 p.

[USC 16] Statistics About Business Size (including Small Business). US Census
Bureau.

[VAN 92] VanScoy R. L. Software Development Risk: Opportunity, Not Problem.
SEI, CMU/SEI-92-TR-30, Pittsburgh, PA, September 1992.

[WAL 96] Wallace D., Ippolito L. M., Cuthill B. B. Reference Information for
the Software Verification and Validation Process. National Institute of
Standards and Technology (NIST), U.D. Department of Commerce, Special
Publication 500-234, 1996. Available at: https://www.nist.gov/publications/
reference-information-software-verification-and-validation-process

[WES 02] Westfall L. Software customer satisfaction. In: Proceedings of the
Applications in Software Measurement (ASM) Conference, Anaheim, CA,
USA, 2002.

[WES 03] Westfall L. Are we doing well, or are we doing poorly? In: Proceedings
of the Applications in Software Measurement (ASM) Conference, San
Jose, CA, Unites States, June 2–6, 2003. Available at:
www.westfallteam.com/Papers/Are_We_Doing_Well.pdf

let &hbox {char '046}http://www.spmn.com
http://www.spmn.com
https://www.nist.gov/publications/reference-information-software-verification-and-validation-process
https://www.nist.gov/publications/reference-information-software-verification-and-validation-process
let &hbox {char '046}www.westfallteam.com/Papers/Are_We_Doing_Well.pdf
www.westfallteam.com/Papers/Are_We_Doing_Well.pdf

References 589

[WES 05] Westfall L. 12 Steps to Useful Software Metrics. The Westfall Team,
Whitepaper, USA, 2005. Available at:
http://www.westfallteam.com/Papers/12_steps_paper.pdf

[WES 10] Westfall L. The Certified Software Quality Engineer Handbook.
American Society for Quality, Quality Press, Milwaukee, WI, 2010.

[WIE 96] Wiegers K. E. Creating A Software Engineering Culture. Dorset House,
New York, 1996, 358p.

[WIE 98] Wiegers K. E. Know your enemy: Introduction to risk management.
Software Development, vol. 6, issue 10, 1998, pp. 38–42.

[WIE 02] Wiegers K. Peer Reviews in Software. Pearson Education, Boston, MA,
2002.

[WIE 03] Wiegers K. Software Requirements, 2nd edition. Microsoft Press,
Redmond, WA, 2003, 516 p.

[WIE 13] Wiegers K. and Beatty J. Software Requirements, 3rd edition. Microsoft
Press, Redmond, WA, 2013, 637 p.

let &hbox {char '046}http://www.westfallteam.com/Papers/12_steps_paper.pdf
http://www.westfallteam.com/Papers/12_steps_paper.pdf

Index

acquisition 492
acquisition strategy 494
agreement 492
attribute 414
audit

according to CMMI 230
according to IEEE 1028 218–224
according to ISO 9001 117,

225–229
case study 241
characteristics 185
CobiT 143
costs 42, 213–214
definition 211
guidance on 109
internal 212
process 26, 29
project 30
quality 74, 212
requirements in SQA plans 239
security 144
steps 226
types of 215

base measure 400, 413–418, 430–431
baseline 180, 191, 225, 231, 241, 298, 301,

305
benchmarking 226, 399, 469, 574
Boehm, Barry 45, 448, 466, 468
BPMN

artifact 373
modeling levels 373
notation 370
process example 375

brainstorming 11, 87, 193, 195, 460, 468,
470–471

branching 311
according to Microsoft 313

commit 314
conflict 313
with Git and GitHub 314, 317
simple strategy 315
strategy 312
synchronize 314
tag 313
trunk 313
typical strategy 316

business models 23, 108, 205, 214, 257,
341, 401, 451

for commercial software 31
for custom systems written on contract

27
for in-house development 30
for mass market software 31

certification 157
change management

books recommended 386
case study 244
definition 321
office 321
policy 322
process 138, 141, 242, 298

change request 152, 300–301, 319–322,
330–331

Charrette, Robert 445
checklist 175–176, 282–286, 391

developing a 283
improvement 286
use 285

CMM
®

for Systems Engineering 130
CMMI

®

history 104
maturity levels 131
for Services 130
validation methods 267

Software Quality Assurance, First Edition. Claude Y. Laporte and Alain April.
© 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

591

592 Index

CMMI-DEV
®

agile 460
case study 241–246
configuration management 299
cost benefit 46
difference with ISO 9001 116
history 104
measurement and analysis 419–420
process improvement 339
risk management 459
supplier agreement management 494–495
traceability 273
verification 180
V&V 266

CobiT 22, 30, 130, 142–143, 156, 228
COCOMO 431
configuration audit 326
configuration control 318
configuration control board 321
configuration item 305

identification 305
marking and labeling 307
selection 308

configuration management 107, 118, 131,
134, 138, 141, 295

conformity
assessment 217, 226, 408
audit 211
certificates 210
certification 157
definition 228
form for suppliers 216
to ISO 9001 112, 215
to ISO 29110 238–239
mentoring process example 232
project 241–246

contract risks 469
corrective action 114, 120, 134, 143,

212–213, 233
cost of quality 2, 39

appraisal cost 41
balance with quality 43
calculation 40, 167
case study 46–49
external failure cost 41
internal failure cost 41

loss of reputation cost 41
prevention cost 40
and process maturity 46
rework cost, see rework

defect 2, 4–6
derived measure 400, 414–418
DO-178 156
document acceptance process 533
DoD-STD 1679A 103

effectiveness 337
efficiency 337
effort 42, 47, 82, 108, 128, 431, 527
EN 50128 159
error 1–2, 4–11
error containment 256
estimation 401

assumption and basis 531
of effort 392
procedure 368
quality 391
software 527
supplier contract 502–504
tool 410, 431

ETVX
diagram examples 278, 310, 361
process notation 357
textual definition 360

failure 2, 4–7
FDA 278–279, 551
five dimensions of a software project

53–56
function 6, 17, 30, 41, 515
functional configuration audit 327
functional requirement 67

human dimension
adoption of change 387
Hawthorne effect 433
improvement 385
measurement 435–437
processes 384
risk management 483

Humphrey, Watts 167

Index 593

Iberle, Kathy 22
IDEF

notation 366
process example 367

IEEE 828 302
IEEE 1012 258–263, 289
IEEE 1028 169, 181, 218–223
IEEE 16085 456–461
IEEE 730 123, 163, 170, 234, 239, 291,

330, 393, 439, 465, 510, 514–539
independent verification and validation

(IV&V) 268–271
indicator 414
integrity levels 159, 161, 258, 260–263,

287, 289, 515
ISO 9000 and 9001 109, 116, 212, 225, 403,

490
ISO 12207 8, 117–123, 217, 263, 298, 402,

455, 491
ISO 13485 161
ISO 15289 104, 121
ISO 15939 104, 411–418
ISO 16085 456–459
ISO 20000 138–141
ISO 24765 107
ISO 27000 143–144
ISO 29110 104, 144, 147, 155, 238, 267,

329, 376, 421
ISO 29110 deployment packages 151
ISO 29110 profiles 145–147
ISO 90003 109, 115, 225
ISO/IEC/JTC1 SC7 105
ITIL 138–141

Jones, Capers 44

Kasunic, Mark 422
key project documents 520

laws of nature 101–102
lessons learned 477
Leveson, Nancy 249
life cycle 8

management commitment 383
management risks 469

mandatory deliverables 520
maturity levels 131
measure 71, 73, 76, 199, 400, 411

costs 438
example 417
process area 419
productivity 418
survey 421

measurement
activities and tasks 412
experience base 411
key roles 409
plan 419
program 421
program implementation steps 425–430
and risk management 479

methodology 526

NASA 362
non-conformance 534
non-functional requirement 67
Northrop Grumman 255

organizational policy 343
organizational standards 352

performance requirement 67
Personal Software Process (PSP) 388
personnel risks 468
physical configuration audit 326
pitfalls of measurement 430, 432
pitfalls in process documentation 356
PMBOK

®
461

Practical Software and Systems
Measurement (PSM) 404–410

problem report and resolution proposal form
237

procedures 351
process

asset 340
asset library 340
audits 387
description 346
implementation of ISO 29110

147
improvement group 348

594 Index

process (Continued)
management for basic profile of ISO

29110 148
mapping 357
notations 357, 366, 370, 376
organizational standards 352
owner 344
performance 410
Personnel Software Process (PSP) 389
problem resolution 236
representation 353
validation 265
verification 265

product 346
product quality 410
project management 29, 104, 132, 134, 142,

147, 155, 367, 461
Project Management Institute (PMI) 212,

461
PSM 404–410

qualification 263
quality assurance 21
quality culture 49
quality model 67
quality perspectives 69
quality policy 341–342
quality system documentation model 337

RACI charts 522
requirements functional 66
requirements non-functional 66
reviews

advantages 171
agile 197
contract 505–509
desk-check 175
formal 169
informal 168
inspection 187
matrix for selecting a 203
peer 180
personal 172
project launch 189–191
project retrospective 192
roles 220

selecting a type of 202
walk-through 184

rework 41–42, 46–49, 112, 134, 154, 179,
182, 188, 221, 239, 255, 298, 322,
329, 354, 410, 438, 446, 448, 478,
497, 539

risk 447
action request 458
analysis 472
assessment example 480
aversion 482
classification grid 473
consequences 480
documentation template 474
evaluation 468
factors 450
identification 455, 459, 461, 468
mitigation 475
monitoring 477
most common 469
prioritization 474
profile 458
questions during execution 538
questions during project planning 524
resolution 477
sources 447
state 458
statement 471
threshold 458
treatment 458, 475

risk management 445
activities 467
advantages 453
control 474
cost/benefit 453
human factors 483
plan 456, 474
process 456
roles 478
tasks list 464

Rolls-Royce 203, 436

Sarbanes-Oxley 214
scale 415
SCAMPI 231
SCE 230

Index 595

severity
checklist 284
classification 534
defect 23, 187, 279, 533
scheme 280

software 3
software acquisition 495

Capability Maturity Model 130
life cycle 497–499
process 492
strategy 494

software agreement 492
software configuration management 295

activities 301
audit during a project 328
baselines 309–310
benefits 297
functional audit 327
physical audit 326–327
plan 302
policies 322
reporting 325
repository 311
status accounting 323
task allocation 304

software contract
cost plus fixed fee 502
cost plus percentage of cost 502
exemplary practices 30
fixed price 501
risk sharing 502–504

software development life cycle 8
software development life cycle V shaped

253
software development project context

447
software engineering 20, 398
software engineering code of ethics 56

eight principles 58
Software Engineering Institute (SEI) 78,

130
software estimation 430–431, 527
software maintenance maturity model (S3M)

135–137
software process measurement 440
software product measurement 441

software project acceptance process
535–536

software project organization 521–522
software quality 19
software quality assurance (SQA) 514

plan (SQAP) 20–22, 95, 128, 163, 205,
239, 291, 330, 393, 439, 465, 510,
514–539

plan outline 516
planning 518
planning questions 521
process 377
records 536–537
tools 525

software supplier types 496
software supply process 496
staff-hour 431
standards 103, 525
standards and models evolution 104
statement of work 148
survey as a measurement tool 421
SWEBOK

®
336, 401

systems engineering 367, 376

technical risks 469
template 352
tests 281
Therac-25 37
TickIT 226
tools 208
traceability 271, 273
traceability matrix 273–274
trunk 313

unit of measurement 415

validation 252–253, 267
plan 279–280
process 118, 258, 265

verification process 118, 180, 258, 265
verification and validation (V&V)

activities 253
activities clarification 537
algorithms analysis technique 288
benefits and costs 255
differences 254
expected benefits 255, 259

596 Index

verification and validation (V&V)
(Continued)

independent V&V 268–271
interface analysis technique

288
limitations 290
plan 279–280
prototyping technique 288
recommended activities 262

simulation technique 289
techniques 287–289

version control 153, 307, 311, 520
Very Small Entities (VSEs) 144
vocabulary 107

waiver 322, 518, 532
walk-through 184
whistle blower 61

S
AQ

oftware
uality

ssurance
CLAUDE Y. LAPORTE

and ALAIN APRIL

S
o

ftw
a

re
 Q

u
a

lity A
ssu

ra
n

c
e

L
A

P
O

R
T
E

 • A
P

R
IL

Cover Design: Wiley
Cover Image: © naqiewei/Gettyimages

www.wiley.com

This book introduces Software Quality Assurance (SQA) and provides an
overview of standards used to implement SQA. It defines ways to assess the

effectiveness of how one approaches software quality across key industry
sectors such as telecommunications, transport, defense, and aerospace.

The book illustrates how basic concepts of software quality assurance can be utilized
in businesses, government agencies, and small organizations that develop software
products in many areas such as telecommunications, transport, defense, and aerospace.
At the same time, it provides an overview of standards used to implement software
quality assurance and defines ways to maximize performance. Topics covered include
quality culture and requirements, software engineering standards and models, software
review and audit, verification and validation, software configuration management,
measurement, risk management, and more. In addition, this book:

• Applies ISO and IEEE software standards as well as the Capability Maturity Model
Integration (CMMI)

• Illustrates the application of software quality assurance practices through the use
of practical examples, quotes from experts, and tips from the authors

• Includes supplementary website with an instructor’s guide and solutions

Claude Y. Laporte, PhD, has coordinated the development, implementation, and
deployment of systems and software engineering processes and project management
processes, and has trained software engineers in America, Europe, and Asia. Since
2000, he has been a professor at the École de technologie supérieure (ÉTS), a Canadian
engineering school, where he teaches software engineering. In 2013, Professor Laporte
was awarded an honorary doctorate for his contributions to software engineering. He
is the Project Editor of the set of ISO/IEC 29110 systems and software engineering
life cycle standards and guides developed specifically for Very Small Entities (VSEs).
He has also written two French software engineering textbooks with Dr. April.
Dr. Laporte is a co-author of another book targeted at managers of small systems
engineering organizations.

Alain April, PhD, is a full professor of software engineering and IT at ÉTS University,
Québec, Canada. He specializes in software quality assurance and IT process mapping/
conformity in the industry transfer of Big Data HPC applications based on Spark,
H2O.ai, and other cloud computing technologies applied to healthcare, construction,
banking, and financial industries. Professor April has been developing healthcare
HPC applications in the area of genomic visualization, genotyping sequencing, and
whole genome sequencing, extending Berkeley’s Adam data structure for HPC. These
applied research projects deploy large-scale machine learning algorithms in research
hospitals for specific use cases, such as type 2 diabetes early prediction and leukemia
treatments in children.

1.375 in

